Deadly Smog in India and Pakistan

November 9th, 2017 |

Suomi NPP VIIRS Day Night Band Visible Imagery (0.70 µm) at Night, 05, 07 and 08 November 2017 (Click to enlarge).

Suomi NPP VIIRS Visible Imagery at Night (the Day Night Band Visible Image (0.7 µm) from 5 November, 7 November and 8 November), above, and Infrared Channel Brightness Temperature Difference  (11.45 µm – 3.9 µm) on 5 November, 7 November and 8 November), below, both show the presence of fog/smog over northern Pakistan and northwestern India from 05-08 November 2017 (Suomi NPP VIIRS Imagery courtesy of William Straka, CIMSS). The Smog led the Government of Punjab to ban burning of stubble; schools in Delhi were closed.  Vehicle crashes linked to reduced visibilities have killed at least 10 people (source).  Air Quality in the region is very poor as shown in this Screen Grab from this site.

Suomi NPP VIIRS Infrared channel Brightness Temperature Difference (11.45 µm – 3.9 µm) on 05, 07, and 08 November 2017 (Click to enlarge)

An animation of Meteosat-8 Visible Imagery, below, from 03-09 November, shows little improvement in conditions in the past week.

Meteosat-8 Visible Imagery (0.6 µm) at 0300 UTC from 03 to 09 November 2017 (Click to enlarge)

Daily composites of Suomi NPP VIIRS true-color Red/Green/Blue (RGB) images from RealEarth, below, showed the areal coverage of the smog during the 03-09 November period. Surface observations at New Delhi’s Indira Gandhi International Airport indicated that the visibility remained below one statute mile — with zero visibility at times — during the 72-hour period spanning 07 November, 08 November and 09 November (animation).

Daily composites of Suomi NPP VIIRS true-color RGB images (click to enlarge)

Daily composites of Suomi NPP VIIRS true-color RGB images (click to enlarge)

Worth noting on a nighttime comparison of Suomi NPP VIIRS Infrared Brightness Difference (11.45-3.74 µm) and Day/Night Band (0.7 µm) images, below, was the appearance of a cloud shadow being cast by moonlight onto the top of the boundary layer smog/fog.

Suomi NPP VIIRS Infrared Brightness Difference (11.45-3.74 µm) and Dat/Night Band (0.7 µm) images [click to enlarge]

Suomi NPP VIIRS Infrared Brightness Difference (11.45-3.74 µm) and Day/Night Band (0.7 µm) images [click to enlarge]

Ex-hurricane Ophelia over Ireland and the United Kingdom

October 16th, 2017 |

Meteosat-10 Water Vapor (6.25 µm) images, with hourly surface wind gusts (knots) plotted in red [click to play MP4 animation]

Meteosat-10 Water Vapor (6.25 µm) images, with hourly surface wind gusts (knots) plotted in red [click to play MP4 animation]

After reaching Category 3 intensity over the eastern Atlantic Ocean on 14 October, Hurricane Ophelia (storm track) rapidly underwent transition to an extratropical storm which eventually spread high winds across much of Ireland and the United Kingdom on 16 October 2017. EUMETSAT Meteosat-10 upper-level Water Vapor (6.25 µm) (above) and lower-level Water Vapor (7.35 µm) images (below) revealed the familiar “scorpion tail” signature of a sting jet (reference). Hourly wind gusts (in knots) from primary reporting stations are plotted in red.

Meteosat-10 Water Vapor (7.35 µm) images, with hourly surface wind gusts (knots) plotted in red [click to play MP4 animation]

Meteosat-10 Water Vapor (7.35 µm) images, with hourly surface wind gusts (knots) plotted in red [click to play MP4 animation]

Two sites with notable wind gusts were Cork, Ireland (67 knots at 0930 UTC) and Valley, UK (70 knots at 1500 UT), shown below. In fact, a wind gust of 103 knots (119 mph or 191 km/hour) was reported at the Fastnet Rock Lighthouse off the southwest coast of Ireland.

Time series plot of surface data from Cork, Ireland [click to enlarge]

Time series plot of surface data from Cork, Ireland [click to enlarge]

Time series plot of surface data from Valley, United Kingdom [click to enlarge]

Time series plot of surface data from Valley, United Kingdom [click to enlarge]

———————————————————————————-

Terra and Aqua MODIS true-color images [click to enlarge]

Terra and Aqua MODIS true-color images [click to enlarge]

In a toggle between Terra MODIS (overpass time around 1159 UTC) and Aqua MODIS (overpass time around 1345 UTC) true-color Red/Green/Blue (RGB) imagery (above), a somewhat hazy appearance was seen over the Irish Sea on the Terra MODIS image. This was due to an airborne plume of sand from the Sahara Desert (UK Met Office story).

In fact, blowing sand was observed about 3 hours later at Isle of Man, from 1520-1620 UTC — during that time period their surface winds gusted to 68 knots (78 mph), and surface visibility was reduced to 2.2 miles (below).

Time series plot of surface data from Isle of Man [click to enlarge]

Time series plot of surface data from Isle of Man [click to enlarge]

Hurricane Irma in the eastern Atlantic Ocean

September 1st, 2017 |
Suomi NPP VIIRS Infrared Window (11.45 µm) and Day/Night Band (0.7 µm) images (Click to enlarge)

Suomi NPP VIIRS Infrared Window (11.45 µm) and Day/Night Band (0.7 µm) images (Click to enlarge)

A toggle between nighttime images of Suomi NPP VIIRS Infrared Window (11.45 µm) and Day/Night Band (0.7 µm) data at 0347 UTC (courtesy of William Straka, SSEC/CIMSS) showed a high-resolution view of the eye of Category 3 Hurricane Irma.

 

Toggle of CIMSS True Color, GOES-16 Split Window Difference (10.3 µm – 12.3 µm) field, and GOES-16 Dust RGB Product, 1315 UTC on 1 September 2017 (Click to enlarge)

GOES-16 data (ABI and GLM) posted on this page are preliminary, non-operational and are undergoing testing

The animation above cycles through imagery from 1315 UTC on 1 September, showing CIMSS GOES-16 True Color Imagery, The GOES-16 Split Window Difference (10.3 µm – 12.3 µm), and the GOES-16 Dust RGB (Red-Green-Blue) Product. The Split Window Difference field highlights moist air (bright red in the enhancement) to the south of Irma, and also dryer air (blue in the color enhancement), to the north. The Saharan Air Analysis, below, from the CIMSS Tropical Weather Website, corroborates the placement of the dry air to the north of Irma, and Total Precipitable Water estimates (from here) also show dry air. This dry air could influence further strengthening of the storm in the short term.

Saharan Air Layer analysis on 01 September 2017 (Click to animate)

Irma is near the eastern edge of the GLM Domain for GOES-16 in the central Test position at 89.5 W Longitude; the animation below, with GLM Group information (every 10 minutes) over ABI Band 13 (10.3 µm, every 30 minutes from the Full Disk Domain), shows little lightning near the center of Irma on 30/31 August. Lightning was more active on 1 September.

GOES-16 ABI “Clean Window” 10.3 µm Infrared Imagery, every half hour, with GLM Group Data plotted in 10-minute increments from 0000 UTC on 30 September through 1200 UTC on 1 September 2017 (Click to animate)

Satellite trends with Irma show the development of an eye structure, as seen below in the screen capture from the GOES-13 Floater (source) at 1745 UTC, and DMSP-16 SSMIS Microwave (85 GHz) at 1829 UTC on 1 September.

GOES-13 10.7 µm Infrared Imagery, 1745 UTC, 1 September 2017 (Click to enlarge)

The evolution of the eye is also apparent in the GOES-16 Visible Imagery (0.64 µm), below, from 1315-1815 UTC on 1 September 2017.

GOES-16 Visible (0.64 µm) Imagery, 1315-1815 UTC, 1 September 2017 (Click to animate)

For more information on Irma, consult the webpages of the National Hurricane Center or the CIMSS Tropical Weather Website.

GOES-16 and Tropical Depression #4 in the Atlantic Ocean

July 6th, 2017 |

GOES-16 “Cirrus Channel” (1.38 µm) near-infrared imagery, 0900-2100 UTC on 6 July 2017 (Click to play animated gif)

GOES-16 data posted on this page are preliminary, non-operational data and are undergoing testing

Tropical Depression #4 formed in the tropical Atlantic on 5 July 2017 (Click here for National Hurricane Center advisories on the system). The Depression is not forecast to strengthen, and two GOES-16 products give evidence to its weakened state. The animation of GOES-16 Band 4 (1.38 µm “Cirrus Channel”), above, shows a general decrease in the high clouds associated with this system (located north of 10º North Latitude and between 40º and 50º West Longitude), meaning convection is not strong. A closer view reveals intricate cirrus transverse banding around the periphery of the system during the early part of the day. In addition, the 10.3 µm “Clean Window” image, below, overlain on top of the GOES-16 Baseline Total Precipitable Water (TPW) Product, shows dry air west of the circulation. A Saharan Air Layer (SAL) analysis from here that uses Meteosat data, shows dry air moving towards the system from the east as well (Link). A toggle between GOES-13 Infrared Window, Meteosat-10 SAL product, and MIMIC TPW imagery can be seen here.

Refer to the National Hurricane Center website, or the CIMSS Tropical Weather website, for more information on this sytem.

GOES-16 “Clean Window” Band (10.33 µm) and GOES-16 Total Precipitable Water, 2100 UTC on 6 July 2017 (Click to enlarge)