Ice floes in Chesapeake Bay

January 7th, 2018 |

Landsat-8 false-color RGB image [click to enlarge]

Landsat-8 false-color RGB image [click to enlarge]

In the wake of the explosive cyclogenesis off the East Coast of the US on 04 January 2018, very cold air began to spread across much of the eastern half of the Lower 48 states. Focusing on the Hampton Roads area of southeastern Virginia, satellite imagery began to show the formation of ice in the rivers and bays. On 06 January, a 30-meter resolution Landsat-8 false-color Red-Green-Blue (RGB) image viewed using RealEarth (above) revealed some of this ice — in particular, long narrow ice floes (snow and ice appear as shades of cyan) that likely emerged from the Back River (northeast of Hampton) and were drifting northward and southward just off the coast of the Virginia Peninsula.

On the following day (07 January), 250-meter resolution Terra MODIS true-color and false-color RGB images from the MODIS Today site (below) showed that a larger V-shaped ice floe was located just southeast of the Peninsula, with its vertex pointed toward the Hampton Roads Bridge-Tunnel (HRBT). Snow and ice also appear as shades of cyan in the MODIS false-color image.

Terra MODIS true-color and false-color RGB images [click to enlarge]

Terra MODIS true-color and false-color RGB images [click to enlarge]

07 January also happened to be the last full day of imagery to be broadcast by the GOES-13 satellite — a comparison of 1-minute Mesoscale Sector GOES-16 (GOES-East) Visible (0.64 µm) and 15-30 minute interval GOES-13 Visible (0.63 µm) images (below) showed that the V-shaped ice floe continued to drift southwestward toward the HRBT. However, it was difficult to tell whether the ice feature made it over and past the tunnel; even with the improved GOES-16 Visible spatial resolution (0.5 km at satellite sub-point, compared to 1.0 km for GOES-13) and the 1-minute rapid image scans, the ice floe became harder to track during the afternoon hours before high clouds began to overspread the region.

"GOES-16

GOES-16 Visible (0.64 µm, left) and GOES-13 Visible (0.63 µm, right) images, with hourly surface air temperatures (ºF) plotted in yellow [click to play MP4 animation]

However, a close examination of Suomi NPP VIIRS true-color and false-color images at 1826 UTC (below) indicated that some of the ice had indeed moved westward past Fort Monroe (on the far southeastern tip of the Peninsula) and over/past the HRBT.

Suomi NPP VIIRS true-color and false-color RGB images [click to enlarge]

Suomi NPP VIIRS true-color and false-color RGB images [click to enlarge]

On the topic of cold temperatures in southeastern Virginia, a new daily record low of -3 ºF was set at Richmond on the morning of 07 January, and at Norfolk new daily record low and record low maximum temperatures were set (10 ºF and 23 ºF, respectively).

Aircraft hole punch and distrail cloud features over southern Lake Michigan

December 20th, 2017 |

GOES-16

GOES-16 “Red” Visible (0.64 µm, top) and Near-Infrared “Snow/Ice” (1.61 µm. bottom) images, with surface station identifiers plotted in yellow [click to play MP4 animation]

GOES-16 (GOES-East) “Red” Visible (0.64 µm) and Near-Infrared “Snow/Ice” (1.61 µm) images (above) revealed a number of aircraft “hole punch clouds” and cloud dissipation or “distrail” features drifting eastward across southern Lake Michigan and adjacent states on 20 December 2017. These cloud features were caused by aircraft that were either ascending or descending through a layer of cloud composed of supercooled water droplets — cooling from wake turbulence (reference) and/or particles from the jet engine exhaust acting as ice condensation nuclei cause the small supercooled water droplets to turn into larger ice crystals (many of which then often fall from the cloud layer, creating “fall streak holes“). The darker gray appearance of the hole punch clouds on 1.61 µm images confirms that the features were composed of ice crystals (since ice is a strong absorber of radiation at that wavelength).

A good example of a hole punch cloud adjacent to a longer distrail feature was seen over far southeastern Minnesota and the Minnesota/Wisconsin border, using 250-meter resolution Aqua MODIS true-color and false-color Red-Green-Blue (RGB) images from the MODIS Today site (below). Glaciated (ice crystal) cloud features appeared as darker shades of cyan in the false-color image.

Aqua MODIS true-color and false-color RGB images [click to enlarge]

Aqua MODIS true-color and false-color RGB images [click to enlarge]

A very detailed view of a hole punch cloud over Lake Michigan was provided by 30-meter resolution Landsat-8 false-color imagery at 1635 UTC, viewed using RealEarth (below).

Landsat-8 false-color RGB image [click to enlarge]

Landsat-8 false-color RGB image [click to enlarge]

===== 21 December Update =====

Another example of numerous aircraft hole punch and distrail cloud features was seen on Terra MODIS true-color and false-color RGB images on 21 December. over northern Illinois and northern Indiana (below).

Terra MODIS true-color and false-color images [click to enlarge]

Terra MODIS true-color and false-color RGB images [click to enlarge]

Lake effect and river effect clouds in northeastern Montana

November 4th, 2017 |

GOES-16 "Red" Visible (0.64 µm, top) and Near-Infrared "Snow/Ice" (1.61 µm, bottom) images, with hourly plots of surface observations [click to play MP4 animation]

GOES-16 “Red”Visible (0.64 µm, top) and Near-Infrared “Snow/Ice” (1.61 µm, bottom) images, with hourly plots of surface observations [click to play MP4 animation]

* GOES-16 data posted on this page are preliminary, non-operational and are undergoing testing *

As arctic air began to spread eastward across Montana — where the coldest temperature in the US was -12ºF — behind an inverted trough (surface analyses) on 04 November 2017, GOES-16 “Red” Visible (0.64 µm) and Near-Infrared “Snow/Ice” (1.61 µm) images (above) revealed bands of “lake effect” (from Fort Peck Lake) and “river effect” (slightly upstream, from the Missouri River) clouds. On the Snow/Ice images, sow cover (and cold ice crystal clouds) appear as darker shades of gray, in contrast to supercooled water droplet clouds which are brighter white. Note that surface air temperatures at Glasgow (KGGW) and Jordan (KJDN) were generally in the 15 to 20ºF range.

A 1-km resolution Aqua (overpass times) MODIS Sea Surface Temperature product (below) indicated that SST values were still 50ºF and warmer (darker shades of green) in parts of Fort Peck Lake. Farther to the west, a deeper portion of the Missouri River exhibited SST values in the mid-40s F (cyan) — this area  was likely the source of the river-effect cloud features. The temperature difference between the surface air and the warmer lake/river water was therefore in the 30-35ºF range.

Aqua MODIS Sea Surface Temperature product [click to enlarge]

Aqua MODIS Sea Surface Temperature product [click to enlarge]

In a toggle between 250-meter resolution Terra (overpass times) MODIS true-color (Bands 1/4/3) and false-color (Bands 7/2/1)  Red-Green-Blue (RGB) images from the MODIS Today site (below), the false-color image helps to highlight the bands of supercooled water droplet river effect and lake effect clouds (brighter white) — snow cover (and high-altitude ice crystal clouds) appear as shades of cyan.

Terra MODIS true-color and false-color RGB images [click to enlarge]

Terra MODIS true-color and false-color RGB images [click to enlarge]

A 30-meter resolution Lnndsat-8 false-color image (below) captured the dissipating remnants of the Missouri River cloud plume at 1800 UTC; a few cumulus cloud streets could also be seen over Fort Peck Lake, along the far eastern edge of the image swath.

Landsat-8 false-color image [click to enlarge]

Landsat-8 false-color image [click to enlarge]

Wildfires in Northern California

October 9th, 2017 |

GOES-16 Shortwave Infrared (3.9 µm) images, with county outlines plotted in gray (dashed) and surface station identifiers plotted in white [click to play MP4 animation]

GOES-16 Shortwave Infrared (3.9 µm) images, with county outlines plotted in gray (dashed) and surface station identifiers plotted in white [click to play MP4 animation]

* GOES-16 data posted on this page are preliminary, non-operational and are undergoing testing *

GOES-16 Shortwave Infrared (3.9 µm) images (above) showed the “hot spot” signatures (black to yellow to red pixels) associated with numerous wildfires that began to burn in Northern California’s Napa County around 0442 UTC on 09 October 2017 (9:42 PM local time on 08 October). A strong easterly to northeasterly Diablo wind (gusts) along with dry fuels led to extreme fire behavior, with many of the fires quickly exhibiting very hot infrared brightness temperature values and growing in size at an explosive rate (reportedly burning 80,000 acres in 18 hours).

A comparison of nighttime GOES-16 Shortwave Infrared (3.9 µm) and Near-Infrared “Snow/Ice” (1.61 µm) images (below) offered another example of nocturnal fire signature identification — the bright glow of the fires showed up well on the 1-km resolution 1.61 µm imagery. Especially noteworthy was the very rapid southwestward run of the Tubbs Fire, which eventually moved just south of station identifier KSTS (Santa Rosa Sonoma County Airport; the city of Santa Rosa is located about 5 miles southeast of the airport. These Northern California fires have resulted in numerous fatalities, destroyed at least 3500 homes and businesses, and forced large-scale evacuations (media story).

GOES-16 Shortwave Infrared (3.9 µm, left) and Near-Infrared

GOES-16 Shortwave Infrared (3.9 µm, left) and Near-Infrared “Snow/Ice” (1.61 µm, right) images [click to play MP4 animation]

A toggle between 1007 UTC (3:07 AM local time) Suomi NPP VIIRS Shortwave Infrared (3.74 µm) and Day/Night Band (0.7 µm) images (below) provided a view of the fires at an even higher spatial resolution. Since the Moon was in the Waning Gibbous phase (at 82% of Full), it provided ample illumination to highlight the dense smoke plumes drifting west-southwestward over the adjacent offshore waters of the Pacific Ocean.

Suomi NPP VIIRS Shortwave Infrared (3.74 µm) and Day/Night Band (0.7 µm) images [click to enlarge]

Suomi NPP VIIRS Shortwave Infrared (3.74 µm) and Day/Night Band (0.7 µm) images [click to enlarge]

A closer VIIRS image comparison (with county outlines) is shown below.

Suomi NPP VIIRS Shortwave Infrared (3.74 µm) and Day/Night Band (0.7 µm) images [click to enlarge]

Suomi NPP VIIRS Shortwave Infrared (3.74 µm) and Day/Night Band (0.7 µm) images [click to enlarge]

A comparison of Suomi NPP VIIRS true-color and false-color Red-Green-Blue (RGB) images from RealEarth (below) helped to discriminate between smoke and cloud features offshore over the Pacific Ocean.

Suomi NPP VIIRS True-color and False-color RGB images [click to enlarge]

Suomi NPP VIIRS True-color and False-color RGB images [click to enlarge]

===== 10 October Update =====
Suomi NPP VIIRS true-color and false-color images [click to enlarge]

Suomi NPP VIIRS true-color and false-color images [click to enlarge]

With the switch to southwesterly surface winds on 10 October, smoke plumes could be seen moving northeastward on RealEarth VIIRS true-color imagery, while the burn scars of a number of the larger fires became apparent on VIIRS false-color RGB imagery (above).

===== 11 October Update =====

Landsat-8 false-color RGB images, from 04 October (before the Tubbs Fire) and 11 October (after the Tubbs Fire) [click to enlarge]

Landsat-8 false-color RGB images, from 04 October (before the Tubbs Fire) and 11 October (after the Tubbs Fire) [click to enlarge]

A toggle (above)  between 30-meter resolution Landsat-8 false-color RGB images from 04 October (before the Tubbs Fire) and 11 October (after the Tubbs Fire) showed the size of the fire burn scar (shades of brown) which extended southwestward from the fire source region into Santa Rosa.

===== 12 October Update =====
Suomi NPP VIIRS true-color RGB images, with VIIRS-detected fire locations [click to enlarge]

Suomi NPP VIIRS true-color RGB images, with VIIRS-detected fire locations [click to enlarge]

A transition back to northerly winds on 12 October helped to transport the wildfire smoke far southward over the Pacific Ocean (above). Smoke was reducing surface visibility and adversely affecting air quality at locations such as San Francisco (below).

Time series plot of surface observations at San Francisco International Airport [click to enlarge]

Time series plot of surface observations at San Francisco International Airport [click to enlarge]

Suomi NPP VIIRS Aerosol Optical Depth values were very high — at or near 1.0 — within portions of the dense smoke plume (below).

Suomi NPP VIIRS true-color RGB image and Aerosol Optical Depth product [click to enlarge]

Suomi NPP VIIRS true-color RGB image and Aerosol Optical Depth product [click to enlarge]