Industrial and ship plumes in supercooled clouds

December 4th, 2018 |

MODIS and VIIRS

MODIS and VIIRS “Fog/stratus” BTD images [click to enlarge]

A sequence of nighttime MODIS and VIIRS “Fog/stratus” infrared Brightness Temperature Difference (BTD) images (above) revealed long plumes (darker shades of red) streaming southwestward for over 200 miles from their industrial point sources in the Mesabi Range of northeastern Minnesota on 03 December 2018.

During the subsequent daytime hours, a comparison of GOES-16 (GOES-East) “Red” Visible (0.64 µm), Near-Infrared “Snow/Ice” (1.61 µm), Near-Infrared “Cloud Particle Size” (2.24 µm) and Shortwave Infrared (3.9 µm) images (below) showed signatures of these Mesabi Range plumes along with others emanating from industrial or power plant sources. A few ship tracks were also apparent across Lake Superior.

Particles emitted from the exhaust stacks at power plants and industrial sites (as well as ships) can act as efficient cloud condensation nuclei, which causes the formation of large numbers of supercooled water droplets having a smaller diameter than those found within the adjacent unperturbed supercooled clouds — and these smaller supercooled cloud droplets are better reflectors of incoming solar radiation, thereby appearing brighter in the Near-Infrared and warmer (darker gray) in the Shortwave Infrared images.

GOES-16

GOES-16 “Red” Visible (0.64 µm), Near-Infrared “Snow/Ice” (1.61 µm), Near-Infrared “Cloud Particle Size” (2.24 µm) and Shortwave Infrared (3.9 µm) images [click to play animation | MP4]

On the following night, another sequence of MODIS and VIIRS “Fog/stratus” infrared Brightness Temperature Difference (BTD) images (below) highlighted a number of industrial and power plant plumes across Minnesota, northern Wisconsin and the Upper Peninsula of Michigan. The curved shape of many of these plumes resulted from boundary layer winds shifting from northerly to westerly as the night progressed.

MODIS and VIIRS "Fog/stratus" BTD images [click to enlarge]

MODIS and VIIRS “Fog/stratus” BTD images [click to enlarge]

During the following daytime hours on 04 December, a comparison of VIIRS Visible (0.64 µm), Near-Infrared “Snow/Ice” (1.61 µm), Shortwave Infrared (3.74 µm) and Infrared Window (11.45 µm) images (below) showed 2 plume types across eastern Nebraska. There were several of the brighter/warmer plumes similar to those noted on the previous day across Minnesota/Wisconsin/Michigan — but one large plume originating from industrial sites just east of Norfolk (KOFK) had the effect of eroding the supercooled cloud deck via glaciation (initiated by the emission of particles that acted as efficient ice nuclei) and subsequent snowfall. This is similar to the process that creates aircraft “distrails” or “fall streak clouds” as documented here, here and here.

VIIRS Visible (0.64 µm), Near-Infrared

VIIRS Visible (0.64 µm), Near-Infrared “Snow/Ice” (1.61 µm), Shortwave Infrared (3.74 µm) and Infrared Window (11.45 µm) images [click to enlarge]


Farther to the east over Ohio and Pennsylvania, another example of the 2 plume types was seen (below) — one plume originating from an industrial site near Cleveland was glaciating/eroding the supercooled cloud and producing snowfall, while another bright/warm supercooled droplet plume was moving southeastward from a point source located west of Indiana County Airport KIDI.

The Cleveland plume was captured by an overpass of the Landsat-8 satellite, with a False Color Red-Green-Blue (RGB) image viewed using RealEarth providing great detail with 30-meter resolution (below). A small “overshooting top” can even be seen above the industrial site southeast of Cleveland, with the swath of glaciated and eroding cloud extending downwind (to the southeast) from that point.

Landsat-8 False Color RGB image [click to enlarge]

Landsat-8 False Color RGB image [click to enlarge]

Coincidentally, Landsat-8 also captured another example of a glaciating cloud plume downwind of the Flint Hills Oil Refinery south of St. Paul, Minnesota on 03 December (below). The erosion/glaciation of supercooled cloud extended as far south as Albert Lea, Minnesota. Similar to the Cleveland example, a small “overshooting top” was seen directly over the plume point source.

Landsat-8 False Color RGB image [click to enlarge]

Landsat-8 False Color RGB image [click to enlarge]

===== 08 December Update =====

The effect of this industrial plume glaciating and eroding the supercooled water droplet clouds over northern Indiana was also seen in a comparison of Terra MODIS Visible (0.65 µm), Near-Infrared “Snow/Ice” (1.61 µm) and Infrared Window (11.0 µm) images (below).

Terra MODIS Visible (0.65 µm), Near-Infrared

Terra MODIS Visible (0.65 µm), Near-Infrared “Snow/Ice” (1.61 µm) and Infrared Window (11.0 µm) images [click to enlarge]

===== 09 December Update =====



During the following daytime hours, GOES-16 “Red” Visible (0.64 µm), Near-Infrared “Snow/Ice” (1.61 µm), Near-Infrared “Cloud Particle Size” (2.24 µm), Shortwave Infrared (3.9 µm) and “Clean” Infrared Window (10.3 µm) images (below) showed a number of plumes from industrial sites (many of which were likely refineries) streaming southeastward and eastward over the Gulf of Mexico on 09 December. Note the lack of a plume signature in the 10.3 µm imagery.
GOES-16 "Red" Visible (0.64 µm), Near-Infrared "Snow/Ice" (1.61 µm), Near-Infrared "Cloud Particle Size" (2.24 µm), Shortwave Infrared (3.9 µm) and "Clean" Infrared Window (10.3 µm) images [click to play MP4 animation]

GOES-16 “Red” Visible (0.64 µm), Near-Infrared “Snow/Ice” (1.61 µm), Near-Infrared “Cloud Particle Size” (2.24 µm), Shortwave Infrared (3.9 µm) and “Clean” Infrared Window (10.3 µm) images [click to play MP4 animation]

Snow cover in the Brooks Range and North Slope of Alaska

September 2nd, 2018 |

Suomi NPP VIIRS Infrared Window (11.45 µm) images on 01 and 02 September [click to enlarge]

Suomi NPP VIIRS Infrared Window (11.45 µm) images on 01 and 02 September [click to enlarge]

A low moved eastward across the Beaufort Sea on 01 September 2018, bringing a cold front southward across the North Slope and Brooks Range in far northern Alaska (surface analyses). A sequence of Suomi NPP VIIRS Infrared Window (11.45 µm) images (above) showed the clearing of high/cold clouds in the wake of the frontal passage.

The upslope flow of cold air helped to generate accumulating snowfall across that region — prompting a Winter Storm Warning to be issued for the eastern Brooks Range, where 4-8 inches was expected at higher elevations — and some of the resulting snow cover was seen on a Suomi NPP VIIRS Day/Night Band (0.7 µm) image at 1415 UTC or 6:15 am local time on 02 September (below). A comparison with the corresponding VIIRS Infrared Window (11.45 µm) image and Topography is also shown. The darker shades of brown on the topography image correspond to elevations of 6000-8000 feet in the Brooks Range.

Suomi NPP VIIRS Day/Night Band (0.7 µm), Infrared Window (11.45 µm) and Topography images [click to enlarge]

Suomi NPP VIIRS Day/Night Band (0.7 µm), Infrared Window (11.45 µm) and Topography images [click to enlarge]

Later in the day on 02 September, additional clearing of patchy low clouds revealed more of the snow cover, as seen in a toggle between VIIRS Visible (0.64 µm), Shortwave Infrared (3.74 µm) and Topography images (below). Supercooled water cloud droplets are efficient reflectors of incoming solar radiation, making patches of low cloud appear darker shades of gray on the Shortwave Infrared image (helping to identify low clouds over snow cover).

Suomi NPP VIIRS Visible (0.64 µm), Shortwave Infrared (3.74 µm) and Topography images [click to enlarge]

Suomi NPP VIIRS Visible (0.64 µm), Shortwave Infrared (3.74 µm) and Topography images [click to enlarge]

At 2124 UTC (or 1:24 pm local time), a 30-meter resolution Landsat-8 False Color Red-Green-Blue (RGB) image viewed using RealEarth (below) provided a more detailed view of a portion of the snow cover. Snow and ice appear as shades of cyan in this type of RGB image — which is created by combining Landsat bands 6 (1.61 µm), 5 (0.865 µm), and 4 (0.655 µm) as Red, Green, and Blue — and numerous small ice floes can also be seen off the coast.

Landsat-8 False Color RGB image [click to enlarge]

Landsat-8 False Color RGB image [click to enlarge]

On a side note, farther to the west an interesting pattern of contrails was seen in VIIRS Visible and Infrared Window images at 2046 UTC (below). On the Visible image, note that the darker contrail shadows cast onto the surface are displaced about 15 miles to the north (due to the low sun angle); the contrail features exhibited Infrared brightness temperatures of -10 to -15ºC. These contrail patterns were generated by military aircraft performing training exercises: similar features have been noted over California and North Dakota.

Suomi NPP VIIRS Visible (0.64 µm) and Infrared Window (11.45 µm) images [click to enlarge]

Suomi NPP VIIRS Visible (0.64 µm) and Infrared Window (11.45 µm) images [click to enlarge]

A curved portion of one of these contrails was seen on web camera images looking south from Atqasuk (below).

 

Carr Fire in northern California

August 11th, 2018 |
GOES-15, GOES-14, GOES-17 and GOES-16 Shortwave Infrared (3.9 µm) images [click to play MP4 animation]

GOES-15, GOES-14, GOES-17 and GOES-16 Shortwave Infrared (3.9 µm) images [click to play MP4 animation]

* GOES-17 images shown here are preliminary and non=operational *

A comparison of GOES-15 (GOES-West), GOES-14, GOES-17 and GOES-16 (GOES-East) Shortwave Infrared (3.9 µm) images (above) showed the thermal anomaly or “hot spot” (dark black to red pixels) associated with the Carr Fire in northern California on 11 August 2018. A GOES-16 Mesoscale Domain Sector was providing images at 1-minute intervals. This comparison demonstrates how fire detection can be affected by both satellite viewing angle and shortwave infrared detector spatial resolution (4 km at satellite sub-point for the GOES-14/15 Imager, vs 2 km for the GOES-16/17 ABI).

A toggle between 30-meter resolution Landsat-8 False Color and Thermal Infrared (10.9 µm) imagery viewed using RealEarth (below) showed new fire activity (clusters of red pixels) along the northeastern edge of the Carr Fire burn scar on the False Color image, as well as smoke plumes drifting northeastward; the heat signatures (brighter white pixels) of smaller fires hidden by the smoke were more clearly ssen on the Thermal Infrared image. As of this date the Carr Fire was the 8th largest and 6th most destructive fire on record in California, and was responsible for 8 fatalities.

Landsat-8 False Color and Thermal Infrared (10.9 µm) images [click to enlarge]

Landsat-8 False Color and Thermal Infrared (10.9 µm) images [click to enlarge]

Holy Fire in southern California, as viewed by 4 GOES

August 9th, 2018 |
Shortwave Infrared (3.9 µm) images from GOES-15, GOES-14, GOES-17 and GOES-16 [click to play MP4 animation]

Shortwave Infrared (3.9 µm) images from GOES-15, GOES-14, GOES-17 and GOES-16 [click to play MP4 animation]

 * GOES-17 images shown here are preliminary and non-operational *

GOES-15 (GOES-West), GOES-14, GOES-17 and GOES-16 (GOES-East) Shortwave Infrared (3.9 µm) images (above) showed the thermal anomaly or “hot spot” (black to yellow to red pixels) associated with the Holy Fire that was burning in southern California on 09 August 2018. This comparison demonstrates how fire detection can be affected by both satellite viewing angle and shortwave infrared detector spatial resolution (4 km at satellite sub-point for the GOES-14/15 Imager, vs 2 km for the GOES-16/17 ABI).

On the previous day, a 30-meter resolution Landsat-8 False Color Red-Green-Blue (RGB) image visualized using RealEarth (below) provided a more detailed view of the Holy Fire, showing active fires (brighter red) around the northern and eastern perimeter of the burn scar and the smoke plume that was drifting to the north and northwest.

Landsat-8 False Color image [click to enlarge]

Landsat-8 False Color RGB image [click to enlarge]