Holy Fire in southern California, as viewed by 4 GOES

August 9th, 2018 |
Shortwave Infrared (3.9 µm) images from GOES-15, GOES-14, GOES-17 and GOES-16 [click to play MP4 animation]

Shortwave Infrared (3.9 µm) images from GOES-15, GOES-14, GOES-17 and GOES-16 [click to play MP4 animation]

 * GOES-17 images shown here are preliminary and non-operational *

GOES-15 (GOES-West), GOES-14, GOES-17 and GOES-16 (GOES-East) Shortwave Infrared (3.9 µm) images (above) showed the thermal anomaly or “hot spot” (black to yellow to red pixels) associated with the Holy Fire that was burning in southern California on 09 August 2018. This comparison demonstrates how fire detection can be affected by both satellite viewing angle and shortwave infrared detector spatial resolution (4 km at satellite sub-point for the GOES-14/15 Imager, vs 2 km for the GOES-16/17 ABI).

On the previous day, a 30-meter resolution Landsat-8 False Color Red-Green-Blue (RGB) image visualized using RealEarth (below) provided a more detailed view of the Holy Fire, showing active fires (brighter red) around the northern and eastern perimeter of the burn scar and the smoke plume that was drifting to the north and northwest.

Landsat-8 False Color image [click to enlarge]

Landsat-8 False Color RGB image [click to enlarge]

Hurricane John

August 7th, 2018 |

GOES-16

GOES-16 “Red” Visible (0.64 µm) images [click to play animation | MP4]

1-minute Mesoscale Domain Sector “Red” Visible (0.64 µm) images from the AOS site (above) showed the circulation of Hurricane John as it was intensifying from a Category 1 to a Category 2 storm off the west coast of Mexico on 07 August 2018. Several tropical overshooting tops could be seen in the animation.

GOES-16 Upper-level Water Vapor (6.2 µm), Mid-level Water Vapor (6.9 µm), Low-level Water Vapor (7.3 µm) and “Clean” Infrared Window (10.3 µm) images (below) revealed an interesting gravity wave that was propagating northward away from the center of John. This wave appeared to perturb the cloud tops — perhaps via vertical mixing — leading to a slight warming of the colder cloud-top infrared brightness temperatures as the wave passed. The appearance and behavior of this wave was very similar to another observed in Nebraska, Colorado and Kansas on 22 July.

GOES-16 Upper-level Water Vapor (6.2 µm, top left), Mid-level Water Vapor (6.9 µm, top right), Low-level Water Vapor (7.3 µm, bottom left) and

GOES-16 Upper-level Water Vapor (6.2 µm, top left), Mid-level Water Vapor (6.9 µm, top right), Low-level Water Vapor (7.3 µm, bottom left) and “Clean” Infrared Window (10.3 µm, bottom right) images [click to play MP4 animation]

Another item of interest was the circulation of weakening Tropical Storm Ileana being absorbed by the larger circulation of intensifying Hurricane John — this process was illustrated by 3-hourly 850 hPa relative vorticity analyses derived from GOES-15 (GOES-West) satellite winds (below). Similar results were seen at the 700 hPa, 500 hPa and 200 hPa pressure levels.

3-hourly analyses of 850 hPa relative vorticity [click to enlarge]

3-hourly analyses of 850 hPa relative vorticity [click to enlarge]

===== 08 August Update =====

Visible images from GOES-15, GOES-14, GOES-17 and GOES-16 [click to play animation | MP4]

Visible images from GOES-15, GOES-14, GOES-17 and GOES-16 [click to play animation | MP4]

GOES-15 (GOES-West), GOES-14, GOES-17 and GOES-16 (GOES-East) Visible images (above) showed 4 views of Hurricane John after it had diminished to a Category 1 storm on 08 August.

Note that the GOES-15 and GOES-14 Visible images do not appear as bright as those from GOES-17 and GOES-16 — prior to the GOES-R Series of satellites, the performance of visible detectors degraded over time, leading to imagery that appeared more dim as the Imager instrument aged. Visible detectors on the new ABI instrument benefit from on-orbit calibration to remedy this type of degradation.

* GOES-17 images shown here preliminary and non-operational *

Hurricane Hector

August 6th, 2018 |
NOAA-20 and Suomi NPP VIIRS Infrared Window (11.45 µm) images [click to enlarge]

NOAA-20 and Suomi NPP VIIRS Infrared Window (11.45 µm) images [click to enlarge]

* GOES-17 images shown here are preliminary and non-operational *

A toggle between NOAA-20 and Suomi NPP VIIRS Infrared Window (11.45 µm) images (above; courtesy of William Straka, CIMSS) showed the well-defined eye of Hurricane Hector after it had reached Category 4 intensity on 06 August 2018 (advisories: EPAC | CPAC).

GOES-17 “Red” Visible (0.64 µm) images (below) revealed cloud-top gravity waves within the eyewall region of the storm, along with thin filaments of transverse banding in the northern semicircle farther from the eye.

GOES-17

GOES-17 “Red” Visible (0.64 µm) images [click to play animation | MP4]

GOES-15 (GOES-West) Visible (0.63 µm) and Infrared Window (10.7 µm) images (below) showed that eyewall cloud-top infrared brightness temperatures were in the -70 to -80ºC range (black to white enhancement).

GOES-15 Visible (0.63 µm, left) and Infrared Window (10.7 µm, right) images [click to play animation | MP4]

GOES-15 Visible (0.63 µm, left) and Infrared Window (10.7 µm, right) images [click to play animation | MP4]

A magnified view of GOES-15 Visible images (below) revealed mesovortices within the eye of Hector.

GOES-15 Visible (0.63 µm) images [click to play animation | MP4]

GOES-15 Visible (0.63 µm) images [click to play animation | MP4]

Metop ASCAT surface scatterometer winds (below) surrounding the eye were near 70 knots around 1930 UTC.

GOES-15 Infrared Window (10.7 µm) image and Metop ASCAT surface scatterometer winds [click to enlarge]

GOES-15 Infrared Window (10.7 µm) image and Metop ASCAT surface scatterometer winds [click to enlarge]

The MIMIC-TC morphed microwave product (below) showed that Hector underwent an eyewall replacement cycle early in the day on 05 August, and then maintained a well-defined eye as it subsequently strengthened to a high-end Category 4 intensity on 06 August (ADT | SATCON).

MIMIC-TC morphed microwave product [click to play animation]

MIMIC-TC morphed microwave product [click to play animation]

===== 07 August Update =====

NOAA-20 VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images [click to enlarge]

NOAA-20 VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images [click to enlarge]

A nighttime NOAA-20 VIIRS Day/Night Band (0.7 µm) image (above) revealed the presence of mesospheric airglow waves (reference) propagating northwestward away from Category 4 Hurricane Hector on 07 August. Note that these high-altitude waves were not apparent on the corresponding Infrared Window (11.45 µm) image.

Severe thunderstorms in Arizona

August 2nd, 2018 |
Visible images from GOES-15 (0.63 µm, left), GOES-17 (0.64 µm, center) and GOES-16 (0.64 µm, right), with SPC storm reports plotted in red [click to play animation | MP4]

Visible images from GOES-15 (0.63 µm, left), GOES-17 (0.64 µm, center) and GOES-16 (0.64 µm, right), with SPC storm reports plotted in red [click to play animation | MP4]

* GOES-17 images shown here are preliminary and non-operational *

GOES-15 (GOES-West), GOES-17 and GOES-16 (GOES-East) Visible images (above) showed the development of thunderstorms which produced hail and damaging winds (SPC storm reports) in the Phoenix, Arizona area on 02 August 2018. The images are displayed in the native projection of each satellite (no re-mapping). Due to a Full Disk scan, GOES-15 mages were only available every 30 minutes at the beginning of this particular time period; images from GOES-17 were every 5 minutes; a GOES-16 Mesoscale Domain Sector provided images at 1-minute intervals.

The strong thunderstorm winds also produced significant blowing dust — winds gusted to 47 knots (54 mph) and visibility was reduced to 1/2 mile at Phoenix KPHX (below). Winds gusted to 53 knots (61 mph) and visibility fell to 1/4 mile at Chandler KCHD.

Time series of surface observations for Phoenix, Arizona [click to enlarge]

Time series of surface observations for Phoenix, Arizona [click to enlarge]