Land breeze convergence cloud band in Lake Michigan

September 23rd, 2018 |

GOES-16

GOES-16 “Red” Visible (0.64 µm) images, with hourly plots of surface and buoy reports [click to play animation | MP4]

GOES-16 (GOES-East) “Red” Visible (0.64 µm) images (above) showed a narrow cloud band that had developed in Lake Michigan in response to land breeze induced convergence on the morning of 23 September 2018. With inland temperatures cooling overnight into the 30s and 40s F (the coldest in both Wisconsin and Michigan was 29ªF) and lake water temperatures of 64ºF (at the North Michigan buoy 45002) to 69ºF (at the South Michigan buoy 45007), a well-defined nocturnal land breeze was established along the western and eastern shorelines of the lake.

Nighttime VIIRS Day/Night Band (0.7 µm) images from Suomi NPP at 0743 UTC and NOAA-20 at 0832 UTC (below) showed that the cloud band had not yet formed at those times.

VIIRS Day/Night Band (0.7 µm) images from Suomi NPP at 0743 UTC and NOAA-20 at 0832 UTC [click to enlarge]

VIIRS Day/Night Band (0.7 µm) images from Suomi NPP at 0743 UTC and NOAA-20 at 0832 UTC [click to enlarge]

The Terra and Aqua MODIS Sea Surface Temperature product (below) confirmed that mid-lake water temperatures were generally in the middle to upper 60s F (green to light yellow enhancement) across the entire length of Lake Michigan.

Terra/Aqua MODIS Sea Surface Temperature product [click to enlarge]

Terra/Aqua MODIS Sea Surface Temperature product [click to enlarge]

An examination of the MODIS SST product with overlays of RTMA surface winds (below) showed that there was no clear signature in the model wind field of enhanced convergence either before or after the mid-lake cloud band had formed.

Terra/Aqua MODIS Sea Surface Temperature product, with RTMA surface winds [click to enlarge]

Terra/Aqua MODIS Sea Surface Temperature product, with RTMA surface winds [click to enlarge]

However, an overpass of the Metop-A satellite at 1559 UTC provided ASCAT surface scatterometer winds that did a better job than the RTMA at highlighting the mid-lake convergence that was helping to sustain the cloud band (below). This example underscores the value that satellite-derived winds can have over even high resolution models.

Terra MODIS Sea Surface Temperature product, with RTMA surface winds and Metop ASCAT winds [click to enlarge]

Terra MODIS Sea Surface Temperature product, with RTMA surface winds and Metop ASCAT winds [click to enlarge]

Hurricane Florence makes landfall in North Carolina

September 14th, 2018 |

GOES-16

GOES-16 “Red” Visible (0.64 µm) images, with hourly plots of surface wind gusts in knots [click to play MP4 animation]

Hurricane Florence made landfall near Wrightsville Beach, North Carolina at 1115 UTC (7:15 am EDT) with estimated maximum winds of 78 knots (90 mph) and a minimum central pressure estimate of 958 hPa (28.29″). Overlapping GOES-16 (GOES-East) Mesoscale Domain Sectors provided images every 30 seconds — “Red” Visible (0.64 µm) images (above) and “Clean” Infrared Window (10.3 µm) images (below) showed the storm as it slowly moved inland after sunrise. A peak wind gust of 105 mph was recorded at Wilmington NC (which is located at the center of the GOES-16 images); in northeastern North Carolina, winds gusted to 105 mph at Fort Macon and 112 mph at the New River Inlet Buoy.

GOES-16

GOES-16 “Clean” Infrared Window (10.3 µm) images, with hourly plots of wind gusts [click to play MP4 animation]

The MIMIC Total Precipitable Water product (below) showed abundant moisture associated with Florence moving inland during the 48-hour period ending at 23 UTC on 14 September.

MIMIC Total Precipitable Water product [click to play animation | MP4]

MIMIC Total Precipitable Water product [click to play animation | MP4]

Toggles between Visible and Infrared Window images from Terra/Aqua MODIS and Suomi NPP VIIRS are shown below.

Terra MODIS Visible (0.65 µm) and Infrared Window (11.0 µm) images [click to enlarge]

Terra MODIS Visible (0.65 µm) and Infrared Window (11.0 µm) images at 1620 UTC [click to enlarge]

Aqua MODIS Visible (0.65 µm) and Infrared Window (11.0 µm) images [click to enlarge]

Aqua MODIS Visible (0.65 µm) and Infrared Window (11.0 µm) images at 1801 UTC [click to enlarge]

Suomi NPP VIIRS Visible (0.64 µm) and Infrared Window (11.45 µm) images at 1835 UTC [click to enlarge]

Suomi NPP VIIRS Visible (0.64 µm) and Infrared Window (11.45 µm) images at 1835 UTC [click to enlarge]

Over the western Atlantic Ocean, strong winds associated with Florence created large waves which induced upwelling of colder water from below the ocean surface, as seen in Ocean Heat Content data (below).

Ocean Heat Content data from 14 September [click to enlarge]

Ocean Heat Content data from 14 September [click to enlarge]

Hurricane Florence continues to approach the southeastern US

September 11th, 2018 |

GOES-16

GOES-16 “Red” Visible (0.64 µm) images [click to play MP4 animation]

Hurricane Florence maintained Category 4 intensity on the morning of 11 September 2018 — and 1-minute (initially 30-second, until 1345 UTC) Mesoscale Domain Sector GOES-16 (GOES-East) “Red” Visible (0.64 µm) images (above) and “Clean” Infrared Window (10.3 µm) images (below) showed improving eye structure after the tropical cyclone completed an eyewall replacement cycle during the preceding nighttime hours (MIMIC TC). A distinct pattern of transverse banding was also evident within the northern semicircle of Florence on Infrared imagery.

GOES-16

GOES-16 “Clean” Infrared Window (10.3 µm) images [click to play MP4 animation]

DMSP-18 SSMIS Microwave (85 GHz) imagery from the CIMSS Tropical Cyclones site (below) showed a large eye at 1015 UTC, and also at 1103 UTC.

DMSP-18 SSMIS Microwave (85 GHz) and GOES-16

DMSP-18 SSMIS Microwave (85 GHz) and GOES-16 “Clean” Infrared Window (10.3 µm) images at 1015 UTC [click to enlarge]

GOES-16 Upper-level Water Vapor (6.2 µm) images with Derived Motion Winds (below) revealed that a well-defined high altitude outflow channel had developed northwest of Florence, helping the storm to maintain its intensity.

GOES-16 Upper-level Water Vapor (6.2 µm) images, with Derived Motion Winds [click to play MP4 animation]

GOES-16 Upper-level Water Vapor (6.2 µm) images, with Derived Motion Winds [click to play MP4 animation]

1-minute GOES-16 True Color Red-Green-Blue (RGB) images (courtesy of Kathy Strabala, CIMSS; details) are shown below. A larger-scale RGB animation beginning at sunrise is available here (courtesy of Rick Kohrs, SSEC).

GOES-16 natural color RGB images [click to play MP4 animation]

1-minute GOES-16 True Color RGB images, 1330-1440 UTC [click to play MP4 animation]

Taking a closer look at the center of Florence later in the day, 1-minute GOES-16 data (below) showed mesovortices within the eye on Visible imagery, along with a narrow radial band of colder (darker red) cloud-top infrared brightness temperatures about 30-50 miles from the inner edge of the eyewall.

GOES-16

GOES-16 “Red” Viisible (0.64 µm) images [click to play MP4 animation]

GOES-16

GOES-16 “Clean” Infrared Window (10.3 µm) images [click to play MP4 animation]

===== 12 September Update =====

Florence remained at Category 4 intensity early in the day as it continued its northwestward motion toward the southeast coast of the US on 12 September. A 20-hour period of 1-minute GOES-16 Infrared images (from 0000-2015 UTC) is shown below.

1-minute GOES-16

1-minute GOES-16 “Clean” Infrared Window (10.3 µm) images, from 0000-2015 UTC [click to play MP4 animation]

Nighttime toggles between VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images from Suomi NPP and NOAA-20 are shown below (courtesy of William Straka, CIMSS). Bright lightning-illuminated cloud areas can be seen on the DNB images distant to the north and northwest of the storm center; with minimal illumination from the Moon (which was in the Waxing Crescent phase, at only 10% of Full), Florence was illuminated primarily via airglow. On the Infrared images, a coarse pattern of transverse banding was evident along the far southern and western periphery of the storm.

Suomi NPP VIIRS Day/Night Band and Infrared Window images [click to enlarge]

Suomi NPP VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images [click to enlarge]

NOAA-20 VIIRS Day/Night Band and Infrared Window images [click to enlarge]

NOOA-20 VIIRS Day/Night Band (0.7 µm) and Infrared Window (11.45 µm) images [click to enlarge]

A sequence of Terra/Aqua MODIS and Suomi NPP VIIRS Infrared images (below) showed dramatic changes in the cold central dense overcast (CDO) of Florence between 02 and 18 UTC.

Infrared Window images from Terra MODIS (11.0 µm) and Suomi NPP VIIRS (11.45 µm) [click to enlarge]

Infrared Window images from Terra MODIS (11.0 µm) and Suomi NPP VIIRS (11.45 µm) [click to enlarge]

During the morning hours, 1-minute GOES-16 Visible and Infrared images (below) once again displayed a distinct eye and eyewall structure, with surface mesovortices evident within the eye. A curious linear standing wave — extending radially outward to the northeast of the storm center — developed from about 13-15 UTC (best seen on Infrared images).

GOES-16

GOES-16 “Red” Visible (0.64 µm) images [click to play MP4 animation]

GOES-16

GOES-16 “Clean” Infrared Window (10.3 µm) images [click to play MP4 animation]

ASCAT surface scatterometer winds from Metop-A (below) were as strong as 76 knots just northeast of the eye at 1450 UTC.

GOES-16

GOES-16 “Red” Visible (0.64 µm) image with Metop-A ASCAT surface scatterometer winds [click to enlarge]

A stereoscopic animation using GOES-16 and GOES-17 imagery is shown below — to view in three dimensions, cross your eyes until 3 equal images are apparent, then focus on the image in the center. *Note: GOES-17 images shown here are preliminary and non-operational*

Stereoscopic animation using GOES-16 and GOES-17

Stereoscopic animation using GOES-16 and GOES-17 “Red” Visible (0.64 µm) imagery [click to play animation]

During the afternoon hours, GOES-16 Visible and Infrared images (below) showed that the eye presentation  was beginning to deteriorate as Florence weakened to Category 3 intensity by 21 UTC.

GOES-16

GOES-16 “Red” Visible (0.64 µm) images [click to play MP4 animation]

GOES-16

GOES-16 “Clean” Infrared Window {10.3 µm) images [click to play MP4 animation]

The MIMIC Total Precipitable Water product (below) indicated that high TPW values associated with Florence began to move inland along the US East Coast by the end of the day.

MIMIC Total Precipitable Water product [click to enlarge]

MIMIC Total Precipitable Water product [click to enlarge]

Severe thunderstorms in Wisconsin

August 28th, 2018 |

GOES-16

GOES-16 “Red” Visible (0.64 µm) images, with SPC storm reports plotted in red [click to play MP4 animation]

Thunderstorms produced a variety of severe weather (SPC storm reports) as they moved eastward across the Upper Midwest on 28 August 2018. 1-minute Mesoscale Domain Sector GOES-16 (GOES-East) “Red” Visible (0.64 µm) images (above) and “Clean” Infrared Window (10.3 µm) images (below) showed the development and progression of the severe convection across central Wisconsin.

GOES-16

GOES-16 “Clean” Infrared Window (10.3 µm) images, with SPC storm reports plotted in cyan [click to play MP4 animation]

Toggles beween Visible and Infrared images from Terra MODIS (1715 UTC), Aqua MODIS (1855 UTC) and Suomi NPP VIIRS (1945 UTC) are shown below.

Terra MODIS Visible (0.65 µm) and Infrared Window (11.0 µm) images, with plots of SPC storm reports [click to enlarge]

Terra MODIS Visible (0.65 µm) and Infrared Window (11.0 µm) images, with plots of SPC storm reports [click to enlarge]

Aqua MODIS Visible (0.65 µm) and Infrared Window (11.0 µm) images, with plots of SPC storm reports [click to enlarge]

Aqua MODIS Visible (0.65 µm) and Infrared Window (11.0 µm) images, with plots of SPC storm reports [click to enlarge]

Suomi NPP VIIRS Visible (0.64 µm) and Infrared Window (11.45 µm) images, with plots of SPC storm reports [click to enlarge]

Suomi NPP VIIRS Visible (0.64 µm) and Infrared Window (11.45 µm) images, with plots of SPC storm reports [click to enlarge]

These storms also brought heavy rain, which resulted in flooding that closed Interstate 90/94 near Mauston (about halfway between Madison and Fort McCoy) — that area received about 10 inches of rainfall in a 48-hour period (below). Amtrack trains were also forced to stop overnight near that same area, due to flooded tracks.

24-hour precipitation ending at 12 UTC on 28 August and 29 August [click to enlarge]

24-hour precipitation ending at 12 UTC on 28 August and 29 August [click to enlarge]