Sequential NUCAPS Profiles at Higher Latitudes

October 20th, 2016 |
dnb_0538_0724_20oct2016toggle

Suomi NPP Day/Night Band (0.70 µm) and NUCAPS Sounding Locations, 0538 and 0724 UTC on 20 October 2016. Green Dots represent soundings that have passed quality control; Yellow Dots represent soundings for which the infrared retrieval failed; Red dots represent soundings for which both infrared and microwave retrievals failed (Click to enlarge)

The orbital geometry of Suomi NPP is such that regions north of about 43º N latitude can occasionally receive NUCAPS (NOAA-Unique Combined Atmospheric Processing System) Vertical Profiles of moisture and temperature on sequential orbital passes, meaning a given location could have vertical profiles separated by less than 2 hours. This occurred early on 20 October 2016 over Maine and Cape Cod, as shown above: Suomi NPP NUCAPS Vertical Profile locations are indicated over Day/Night Band Visible imagery. Two soundings at approximately the same location are circled in cyan in this small image and are shown below. There are two sequential profiles over Cape Cod, and then the two sequential profiles north of Maine. The atmosphere over Cape Cod was quiescent on this date, and little change between soundings is evident. In contrast, slight cold air advection was occurring north of Maine (Surface analysis from 0900 UTC, 500-mb analysis from 00 UTC), and the NUCAPS Sounding shows mid-level cooling.

20oct2016_0500_0700_41-56_70-18-toggle

NSharp depictions of NUCAPS Vertical Profiles near 42N, 70W at 0500 and 0700 UTC on 20 October 2016 (Click to enlarge)

20oct2016_0500_0700_48-09_67-91-toggle

NSharp Depictions of NUCAPS Vertical Profiles near 48 N, 68 W at 0500 and 0700 UTC on 20 October 2016 (Click to enlarge)

For stations in the northern Plains, or in Canada, sequential soundings overnight or perhaps more importantly in the mid-afternoon (Suomi NPP typically overflies the Plains a bit after Noon local time) could give important information about destabilization.

Previous CIMSS Satellite Blog Entries referencing NUCAPS Vertical Profiles are available here.


=============== Added 2100 UTC on 20 October 2016 ===============
The toggle below shows two soundings, from 1700 and 1800 UTC in central Pennsylvania in the region between Harrisburg and Williamsport (click here to see the Sounding Locations), just east of a slight risk issued by the Storm Prediction Center. The time evolution suggests upward motion (the top of the inversion rises) and a weakening in the cap. Severe Thunderstorm Watch #499 was issued 1945 UTC on 20 October for counties just to the west of these NUCAPS Profile locations — and damaging winds were reported in central Pennsylvania beginning at 2154 UTC.

NSharp depictions of NUCAPS Vertical Profiles near 41N, 77W at 1700 and 1800 UTC on 20 October 2016 (Click to enlarge)

Displaying NUCAPS data from CLASS

November 12th, 2014 |

NUCAPS data have been flowing into AWIPS 2 for months; in the recent past, these data started flowing into the NOAA CLASS data archive as well (click here for a tutorial on accessing the data). How can the NOAA CLASS output be displayed? This post will compare McIDAS-V plots to the data displayed using AWIPS-1, below.

GOES Sounder Total Column Ozone DPI Values Plotted with NAM 500-mb heights and NAM Pressure on the 1.5 PVU surface (click to enlarge)

GOES Sounder Total Column Ozone DPI Values Plotted with NAM 500-mb heights and NAM Pressure on the 1.5 PVU surface (click to enlarge)

Suomi NPP overflew the central United States at about 0850 UTC on 12 November, and ozone concentrations from the NUCAPS soundings at three different levels (~500, 300 and ~200 mb) are shown below. Note that the color scaling is not quite the same in the three plots as the range for each pressure level is different. Maxima in Ozone at all levels occur in the same region — the Dakotas — as indicated by the GOES Sounder Total Column Ozone DPI, above. NUCAPS soundings also show data in cloudy regions because microwave data from ATMS is used in the NUCAPS processing. Note that values at the edge of the color shading have been extrapolated outwards; values in western Nevada and Indiana, for example, are not from direct NUCAPS observations. This plot of 500-mb temperatures (that includes the actual values) shows the horizontal extent of data and the amount of interpolation at the edge.

Contours of Ozone Mixing Ratio (parts per billion) from NUCAPS Soundings at ~0848 UTC on 12 November 2014 (click to enlarge)

Contours of Ozone Mixing Ratio (parts per billion) from NUCAPS Soundings at ~0848 UTC on 12 November 2014 (click to enlarge)

NUCAPS soundings near a Tropical Disturbance

July 1st, 2014 |
Suomi/NPP 11.35 µm infrared channel, 0717 UTC on 1 July 2014 and NUCAPS sounding locations in green (click to enlarge)

Suomi/NPP 11.35 µm infrared channel, 0717 UTC on 1 July 2014 and NUCAPS sounding locations in green (click to enlarge)

Suomi/NPP overflew the developing tropical depression #1 (now Tropical Storm Arthur) east of Florida early in the morning on July 1st. The CrIS and ATMS instruments on board S/NPP provide data for NUCAPS soundings that are routinely distributed to AWIPS II. The image above is an overlay of the 11.35 µm infrared imagery with the sounding locations plotted as green dots. Seven sounding locations are indicated on the image above (Here is the image without the seven sounding locations) How well do NUCAPS soundings represent the tropical atmosphere that is supporting the development of Arthur?

The 7 soundings indicated in the plot above are: 1 (Just south of Pensacola, FL), 2 (Off the coast of Georgia), 3 (northeast of Arthur in the tropical Atlantic), 4 (Cape Canaveral), 5 (north of Tampa Bay), 6 (the western tip of Cuba) and 7 (northeastern Cuba).

GOES Sounder DPI Total Precipitable Water at 0700 UTC on 1 July 2014 (click to enlarge)

GOES Sounder DPI Total Precipitable Water at 0700 UTC on 1 July 2014 (click to enlarge)

How does Precipitable Water from the NUCAPS soundings compare to observations from other satellite-based systems? GOES Sounder DPI TPW from 0800 UTC shows values around 50 mm over interior the southeast United States, and over the tropical Atlantic to the northeast of the tropical system. A corridor of lower values, around 30-35 mm, extends northeast of Jacksonville, FL. Smaller values (30-40 mm) also extend southeastward from the lower Mississippi River valley into the Gulf of Mexico. A similar pattern in the precipitable water is evident in the blended product, here. Precipitable water values from the NUCAPS soundings appear, for this case, to be too low. The value at Cape Canaveral (point 4), for example, is 1.59″ (40 mm, versus close to 50 mm from the Sounder and the Blended Product); off the coast of Georgia (point 2), 1.30″ (33 mm vs. close to 41 mm from the Sounder and Blended Product); south of Pensacola (point 1), 1.25″ (31 mm vs. 35 mm from the Sounder and the Blended Product); north of Tampa Bay (point 5), 1.46″ (37 mm vs 47 mm from the Sounder and the Blended Product); northeast of the tropical system (point 3), 1.84″ (47 mm vs 49 mm from the Sounder/Blended Product); western Cuba (point 6), 1.70″ (43 mm, similar to the 44 mm from the Sounder/Blended Product); and northeast cuba (point 7), 1.22″ (31 mm vs. 39 from the Sounder and 34 from the Blended Product). The lowest 3 kilometers of the atmosphere (where most of the moisture resides) is the most difficult part for a satellite-based sounding, but there do appear to be differences between the two satellite-based sounding products (GOES and NUCAPS) in this case.

NUCAPS Soundings available in AWIPS II

June 10th, 2014 |
Suomi/NPP VIIRS 11.45 µm IR channel and NUCAPS sounding points (click to enlarge)

Suomi/NPP VIIRS 11.45 µm IR channel and NUCAPS sounding points (click to enlarge)

NOAA Unique Cross-track Infrared Sounder (CrIS)/Advanced Technology Microwave Sounder (ATMS) Processing System (NUCAPS) Soundings have started flowing into AWIPS-2 at NWS WFOs across the country. These soundings offer high spectral (and high spatial) resolution soundings derived from the CrIS and ATMS instruments that fly on the Suomi/NPP satellite. The toggle above shows the footprint of the soundings in comparison to an 11.45 µm VIIRS instrument (also on the Suomi/NPP satellite) IR image from approximately 1800 UTC on 10 June 2014. The NUCAPS soundings cover a larger area because they are processed by NOAA/NESIS (vs. being downloaded on the X-Band Direct Broadcast antenna at CIMSS in Madison WI, whose antenna is the source of the VIIRS 11.45 µm IR image shown).

The sounding data, if available, are under the ‘Satellite’ menu tab of AWIPS-2, and then NPP Products can be selected to view NUCAPS Sounding Availability, as shown in this screenshot. Once the sounding locations are loaded, the mouse can be used to select a point, and a left click produces a sounding in an NSharpEditor environment; that is, you can edit it (if, for example, you think the surface dewpoint in the sounding is too dry).

The mid-continent overpass at around 1800 UTC can provide valuable information on the possibility of convective development. For example, consider the visible imagery below from 1915 UTC on May 29 2014. Will convection develop out of that broken cumulus field as forecast by the GFS (not shown)?

GOES-13 0.63 µm Visible Imagery, 1915 UTC 29 May 2014 (click to enlarge)

GOES-13 0.63 µm Visible Imagery, 1915 UTC 29 May 2014 (click to enlarge)

The animation below steps through the Suomi/NPP overpass just after 1800 UTC that was used to created NUCAPS soundings on that day, followed by a close-up over Omaha, then a screen-capture of the created sounding. The sounding (which includes surface values close to those reported by the METAR) has only modest values of Convective Available Potential Energy (CAPE), suggesting that convection is unlikely. And, indeed, visible imagery near sunset shows dissipating cumulus clouds.

NUCAPS Sounding over North America, over Omaha and surroundings, and the individual NUCAPS sounding indicated (Courtesy of Dan Nietfeld, SOO at Omaha/Valley WFO, click to enlarge)

NUCAPS Sounding over North America, over Omaha and surroundings, and the individual NUCAPS sounding indicated (Courtesy of Dan Nietfeld, SOO at Omaha/Valley WFO, click to enlarge)

A second case, below, also from Dan Nietfeld, shows NUCAPS soundings before the devastating hailstorm on June 3 in a High Risk region. In this case, the NUCAPS soundings underestimated the temperature/dewpoint at the surface, but the editable sounding software makes quick work of adjusting the lowest part of the sounding, and the CAPE in the adjusted sounding increased from 1800 to more than 3000. (The location of the sounding is shown here; it is the southern of the two circled green dots.) NUCAPS data underscores the potential of any convection.

NUCAPS soundings, original and adjusted, 1849 UTC on 3 June (click to enlarge)

NUCAPS soundings, original and adjusted, 1849 UTC on 3 June (click to enlarge)

(Click here for further information on ATMS; Click here for further information on CrIS). Many thanks to Dan Nietfeld, SOO at Omaha, for imagery above. Hyperspectral Soundings are described in a COMET module that can be viewed here. A paper (pdf format) describing validation of NUCAPS soundings is available here. Suomi/NPP support is provided in part by the NOAA/NESDIS Joint Polar Satellite System (JPSS) program.