
## Jason Significant Wave Height Quick Guide

## Why are Jason Wave Heights important

Wave Height information is critical for shipping concerns over the ocean where observations are scarce. Jason Wave Heights are altimetric: the satellite detects its own height above the sea surface, to an accuracy of better than 3-1/2 cm. Jason satellites monitor the height of the ocean at high precision, to document ocean elevation changes over long periods of time. Wave actions are a by-product of this accuracy. JASON-3 is one of a suite of ocean altimetry satellites (JASON-2, Saral/ AltiKA, Cryosat-2, Sentinel-3a and -3b). Only JASON is in AWIPS however.



## **Specifications**

- JASON wave heights over the western Pacific, 1630 UTC 04 December 2018, along with AHI Band 13 (10.41 μm) Brightness Temperatures
- Coverage over oceans and Great Lakes
- Spatial resolution depends on sea state, but generally about 5 km (cross-track) and 11 km (along-track)
- You should ignore points over land or within 15-20 km of land
- Estimated accuracy to within 0.5 m or 10%, whichever is larger
- Does not require clear field of view
- Coverage Equatorward of 66°, Repeat Cycle of 9.9 days after 254 orbits Impact on Operations

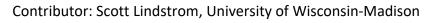
**Primary Application**: JASON wave heights are an important ground truth in wave estimates in regions where ship and buoy information is scarce.

**Jason acronym:** Joint Altimetry Satellite Oceanography Network. Jason lead the argonauts seeking the golden fleece.

**Characterization:** Wave height is derived from the shape and intensity of the altimeter radar echo, a ~2-5 km footprint (depending on sea state), to within 10% or 0.5 meters, whichever is greater.

**Online:** Jason data at OSPO. Significant Wave Height from NOAA STAR.

## <u>Resources</u>


NOAA OSPO Jason-3 Product Handbook

NOAA OSPO

Jason-2 Product Handbook

COMET Training

Hyperlinks will not work in AWIPS, but they do in VLab



