

## Cloud Top Temperature

### Quick Guide





## Why is the Cloud Top Temperature Important?

The Baseline Cloud Top Height
Temperature estimates the
temperature of the cloud top in
degrees Celsius; it is generally more
accurate than individual channel
Brightness Temperatures that can
be affected by absorption by gases.
The product can be used to monitor
cloud-top changes during
convection. Temperature
thresholds for events can be used
with this product.



### **Cloud Top Temperature Temporal Cadence and Band Requirements**

| Domain    | Temporal Refresh | Local Zenith Angle Range       | ABI Bands Used            |
|-----------|------------------|--------------------------------|---------------------------|
| Full Disk | 15 minutes       | Quantitative from<br>0° to 65° | 11.2 μm, 12.2 μm, 13.3 μm |
| Mesoscale | 1 minutes        |                                |                           |

### **Impact on Operations**

<u>Primary Application</u>: A principle application is for monitoring convection. How quickly a cloud-top cools is a proxy for updraft strength.

#### **Limitations**

**Limitation:** Upstream issues with the clear sky mask and cloud phase may cause misclassification; Accuracy is reduced in multi-layer situations.

**Limitation:** The accuracy requirement is 3 K.

**Limitation:** The product is not computed at CONUS Scales as of February 2018.

Contributor: Scott Lindstrom Revision Date: February 2018



# Cloud Top Temperature

### Quick Guide





### **Image Interpretation**

- Warmest clouds are typically purple and dark blue.
- Tropical Mid-level
  Clouds are green.
  High clouds in
  mid-latitudes are
  also green.
- Strong convection is yellow, and overshooting tops are orange and red.



### **Cloud Top Temperatures in AWIPS**

Some products in AWIPS use Cloud-Top Temperature already as a proxy for convective development. For example, the NOAA/CIMSS ProbSevere model characterizes convective growth as weak/moderate/strong based on cloud-top cooling. That cooling is based on a single channel, however, and not on this product.

### Resources

ATBD on Cloud Top
Temperature

Hyperlinks do not work in AWIPS but they do in VLab