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Objectives

Ultimate goal: Total Precipitable Water (TPW) retrieval using deep 
learning method for the 22 GHz radiometer
Current step: Develop a deep learning-based forward emulator 

(DLFE) for 22 GHz radiometer calibration
Predict downwelling brightness temperature (BT) for 22 GHz radiometer
Field campaign measurement with radiosonde data
Simulate BT with MonoRTM and DL
Radiometer CAL with simulated BTs

Next step: Develop TPW retrieval with DLFE (Radiometer validation)



Reference and Input Data

Input data was collected from European Centre for Medium-Range Weather 
Forecasts (ECMWF)
ECMWF offers a quarter-degree spatial resolution and 91 layers vertically
ECMWF data was further collocated with ATMS SDR pixels to simulate real 

weather conditions and to support model input
Reference labels are generated from MonoRTM
MonoRTM is a line-by-line radiative transfer model for microwave region
The reference labels are brightness temperatures values from Ka band 22.148 

GHz
Only downwelling brightness temperatures were calculated

Presenter Notes
Presentation Notes
ECMWF - European Centre for Medium-Range Weather ForecastsThe model input data is sourced from ECMWF, which offers a quarter-degree spatial resolution and 91 layers vertically. This data is archived daily on the NOAA STAR local server. ECMWF data has been further collocated with ATMS SDR pixels to simulate real weather conditions, and to enable the use of ATMS sensor zenith angle (SZA) and other ATMS geophysical parameters to support model input. The radiative transfer model (RTM) simulation data, generated using MonoRTM - a line-by-line RTM model for microwave region, serves as the reference labels for DLFE. Therefore, the initial model includes SZA, surface pressure, surface temperature, emissivity, and 91-layer temperatures and water vapor contents, totaling 186 input features. The reference label is the model BT of the Ka band (22.148 GHz) simulated from MonoRTM. To meet the ground-based measurement requirements for the radiometer, only downwelling brightness temperatures (BTs) were calculated and used for model training. As a result, surface states, such as emissivity and wind speed, do not affect model accuracy significantly, unlike observations from satellites. 



Methodology

Reducing the likelihood of overfitting
 Regularization used in output layer to reduce overfitting
 Both training and validation data sets are standardized before input



Model Convergence
Model input:
 90 thousand records in global
 approximately 8:1:1 training, 

validation, testing split

Training method
 Initial learning rate 0.0001
 Learning rate decreased by 2% every 

90 steps
 6 total training sessions with 600 

epochs each

Results
 Validation loss convergence 

decreased with every training 
session

 Validation loss converged to 0.00126 
in the 6th session



Model Evaluation on Testing Dataset

Results are excellent
 Predictions are very accurate and have a high correlation with the labels
 Residuals are normally distributed and centered around 0 with a very small 

standard deviation of 0.124



Collecting Real-world Data

Camping trip

 Set up radiometer at an 
open field near IAD airport

 Radiometer measured 
outside temperature and 
counts

Measurements taken at 
different zenith angles (0˚ 
to 70˚) between 10 and 12 
pm



Conclusion
A deep-learning based forward emulator was developed to support the calibration and validation of the dual-
mode Ka band radiometer constructed at ESSIC
 Training input collected from ECMWF which contains SZA, surface pressure, surface temperature, emissivity, 

91-layer temperature, and 91-layer water vapor content

 RTM calculated brightness temperatures used as reference labels

Evaluation on testing data show DLFE can predict BTs with high accuracy

 Predicted BTs and reference labels have high positive correlation of nearly 1

 BT differences have a mean of 0.004 and standard deviation of 0.124, very low

Radiometer was set up in an open field near IAD airport to collect real-world data

 Collected counts, which will be converted to BTs in the calibration process



Future Work
Development of deep neural network for predicting TPW with brightness 
temperature as input
Analyze and clean data from camping trip
Simulate BTs using MonoRTM and DLFE with measurements and 

radiosonde data
Calibrate and validate camping trip data to get brightness temperature 

values
Create an deep-learning (DL) model to predict TPW with ECMWF
Tune model to increase accuracy
Conduct radiometer validation using the TPW-retrieval DL model with 

calibrated BTs as input.
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