

Machine Learning Application of the Tropical Cyclone Precipitation, Infrared, Microwave, and Environmental Dataset (TC PRIMED)

Naufal Razin 2023 CoRP Symposium Madison, WI

Why passive microwave?

- When forecasting tropical cyclones, forecasters rely on satellite imagery
- Infrared/visible imagery from geostationary satellites provide good continuous observation
- But observations in infrared/visible channels are limited to cloud tops

Why passive microwave?

- Observations in certain passive microwave channels can penetrate through cloud tops
- Forecasters gain insight into location of low-level precipitation, strength of convection, structure of tropical cyclones: guides forecast of hurricane threat like intensity and rainfall
- Useful data for tropical cyclone research and forecast product development

Passive microwave observations

- Passive microwave observations come from low-Earth-orbiting satellites
- Collocating passive microwave data in a user-friendly format is non-trivial
- We set out to build capacity for the utilization of passive microwave data in research and forecast product development: TC PRIMED

TC PRIMED Products

50°W

40°W

30°W

20°W

25°N

20°N

15°N

80°W

- NASA intercalibrated microwave brightness temperatures
- NASA passivemicrowave-based retrieved rainfall
- NASA precipitation radar variables (TRMM/GPM)
- Nearly-coincident infrared brightness temperature

Cat. 5

Cat. 4

Cat. 3

- Cat. 2

- Cat. 1

TS

TD

40°N

35°N

25°N

20°N

Tropical cyclone track and intensity information collected by the National Hurricane Center, Central Pacific Hurricane Center, and the DoD's Joint Typhoon Warning Center

TC PRIMED Summary

- Current state of TC PRIMED
 - Global tropical cyclone observations from 1998 2021
 - 2,300 tropical cyclones
 - 197,000 satellite observations (NASA, JAXA, NOAA, DoD, EUMETSAT)
- TC PRIMED now available on the cloud through the NOAA Open Data Dissemination program (NODD); awaiting final publication by the NOAA National Centers for Environmental Information (NCEI)
- Maintain, update, and add more products to TC PRIMED

Tropical Cyclone Secondary Eyewalls

- Some tropical cyclones form secondary eyewalls, which can lead to:
 - intensity fluctuations
 - larger area of hazards like strong winds, heavy rain, and storm surge
- To use TC PRIMED to study tropical cyclone secondary eyewalls, need a way to label secondary eyewalls across different passive microwave sensors in TC PRIMED

Methods

- Use secondary eyewall labels from Cheung et al. (*in review*)
 - hand-labeled select storms from 2016 – 2020
 - AMSR2, GMI, and SSMIS sensors
 - apply filter (Mueller et al. 2006) to reduce resolution differences
- Convolutional Neural Network
 - 89 92 GHz polarization corrected brightness temperature
 - normalized by min / max
 - $PCT(norm) = \frac{PCT PCT(min)}{PCT(min) PCT(max)}$

CNN Architecture

C = Convolution Layer, leaky ReLU $(32, 3 \times 3)$

	# SE	# No SE	% SE
training	59	629	9.4
validation	13	134	9.7
testing	13	137	9.5

P = Pooling Layer, average (32, 2 x 2)

Dense Layer = 200 nodes, leaky ReLU

Represent SE / No SE labels as numerical values using one-hot encoding, softmax

Custom weighted categorical cross entropy loss function

Preliminary Results

Tasiaisa		Truth			Validation		Truth		Tasting		sting	Truth	
Iraining	Yes	No		Valluation	Yes	No		lesting		Yes	No		
Predicted	Yes	59	0	icted	Yes	7	6		icted	Yes	6	8	
	No	0	629		Pred	No	6	128		Pred	No	7	129

- Model is overfitting on the training data
 - small sample size of secondary eyewall cases
 - sub-optimal model architecture
 - sample not generalized enough

Model Next Steps

• Analyze model results to understand patterns behind hits, misses, and false alarms.

Secondary Eyewall Summary

- Add more labels from other sensors
- Generalize samples through data augmentation
- Improve CNN to have a TC PRIMED label of secondary eyewalls
- Employ explainable AI methods to understand if the model is keying in on the physical features
- Investigate secondary eyewalls using TC PRIMED

Extras

Using TC PRIMED to Promote the Use of Satellite Passive Microwave Data

- NCAI project to develop set of Jupyter notebook learning journeys
- Users will learn from the very basic knowledge of understanding the file and data types to applying TC PRIMED for analysis and AI

Hits (testing set)

False Alarms (testing set)

Misses (testing set)

