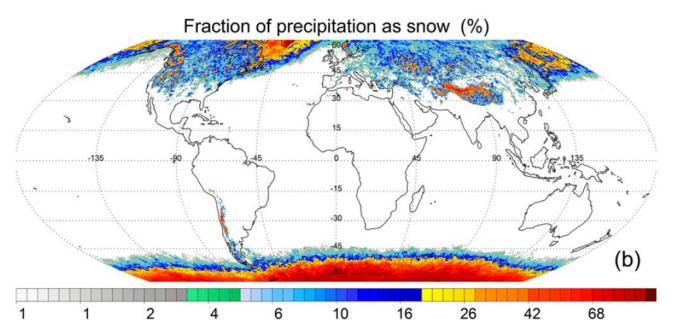


The NOAA NESDIS Snowfall Rate Product: Development and Applications

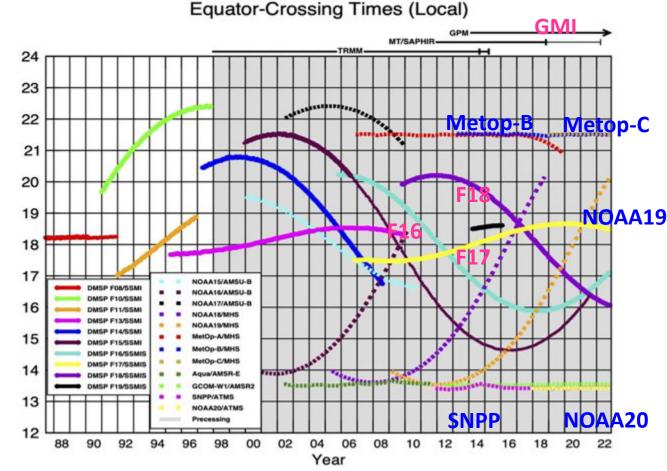
Yulan Hong¹, Huan Meng², Jun Dong¹ Yongzhen Fan¹, and Vivek Agarwal³


¹CISESS/Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD ²NOAA/NESDIS/Center for Satellite Applications and Research (STAR), College Park, MD ³Department of Computer Science, University of Maryland, College Park, MD

Background

- Snowfall plays an important role in energy balance and water cycle in our Earth-atmosphere system.
- Snowfall is the most common type of precipitation in high latitudes, providing a major source of freshwater for many counties.

 Snowfall affects our social and economic activities such as transportation disruptions, risk of accidents, school and work closures, etc.


Adhikari et al. 2018

Satellite observations continue playing significant roles in better tracking and predicting snowfall events.

- Snowfall Rate (SFR) product derived from passive microwave measurements
- > Water equivalent snowfall rate estimate
- Operation at NOAA/NESDIS since 2012
- Operation for the sensors at five platforms: S-NPP/ATMS, N20/ATMS, N19/MHS, Metop-B(C)/MHS
- Experiment for sensors: N21/ATMS, GPM/GMI, SSMIS on DMSP-F16, F17, F18

Ascending passes (F08 descending); satellites depicted above graph precess throughout the day. Image by Eric Nelkin (SSAI), 29 November 2022, NASA/Goddard Space Flight Center, Greenbelt, MD.

ARYLAN

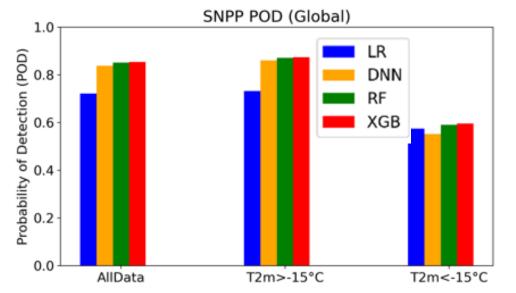
Product Algorithms – ML-based Snowfall Detection (SD)

Training

Land: NOAA Integrated Surface Database (ISD), 2016-2020. *Ocean*: Cloud Profiling Radar (CPR) near-surface precipitation product, 2012-2019.

Features: Satellite-observed brightness temperatures (Tbs) and GFS model data (temperature, humidity, cloud information, etc.).

ML models


Logistic Regression (LR), Deep Neural Network (DNN), Random Forest (RF) and eXtreme Gradient Boosting (XGB)

Validating

SD models were evaluated using an independent testing dataset.

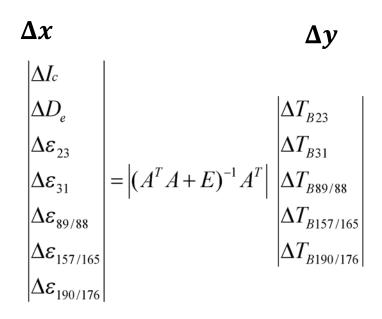
Performance is consistently good across different sensors;

XGB yields the best accuracy, which is now used in our algorithm.

POD = (snowfall pixels)/(true snowfall pixels)

POD ~ 0.8 for all data, better for warmer situation.

1DVAR optimization framework


Inverse model $x = F^{-1}(y)$

I_c and D_e are retrieved from the 1DVAR, then SFR is obtained.

$$SFR = A \int_{D_{min}}^{D_{max}} D^{b_m + \nu - 2} D \overline{D_e} \left[\left(\left(1 + B D^{\frac{b_m}{2}} \right)^{\frac{1}{2}} - 1 \right) \right]^2 dD$$

$$A = \frac{n I_w \delta_0^2 \Gamma^{b_m + \nu}(\nu + 1)}{4\rho_l \rho_a \mathcal{D}_e^{b_m + \nu} \Gamma(b_m + \nu) \Gamma^{b_m + \nu}(\nu)}$$

$$B = \frac{8}{\eta \delta_0^2} \sqrt{\frac{2\rho_a g a_m}{\pi A_r^k C_0}}$$

Ic: ice water path

 D_e : ice particle effective diameter

 ϵ_i : emissivity at 23.8, 31.4, 89(MHS)/88.2(ATMS), 157/165.5, and 190.31/183±7 GHz for AMSU/MHS and ATMS (similar channels for GMI and SSMIS)

 T_{Bi} : brightness temperature at 23.8, 31.4, 89/88.2, 157/165.5, and 190.31/183±7 GHz for AMSU/MHS and ATMS (similar channels for GMI and SSMIS)

A: Jacobian matrix, derivatives of T_{Bi} over Ic, D_{e} , and ε_i E: error matrix

Yan et al., 2008

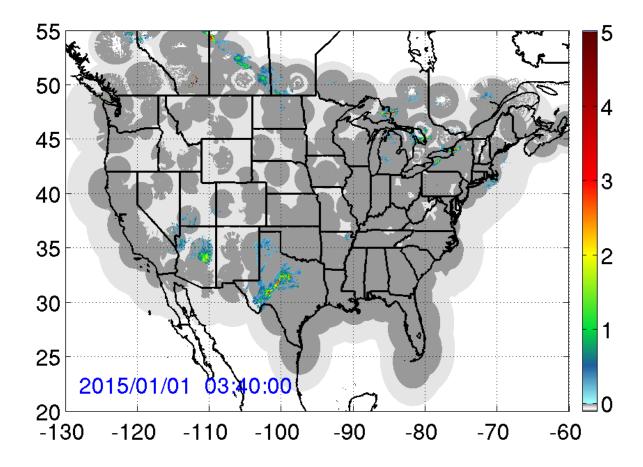


A Deep Neural Network was trained to correct the bias of SFR output from 1DVAR.

Training datasets:

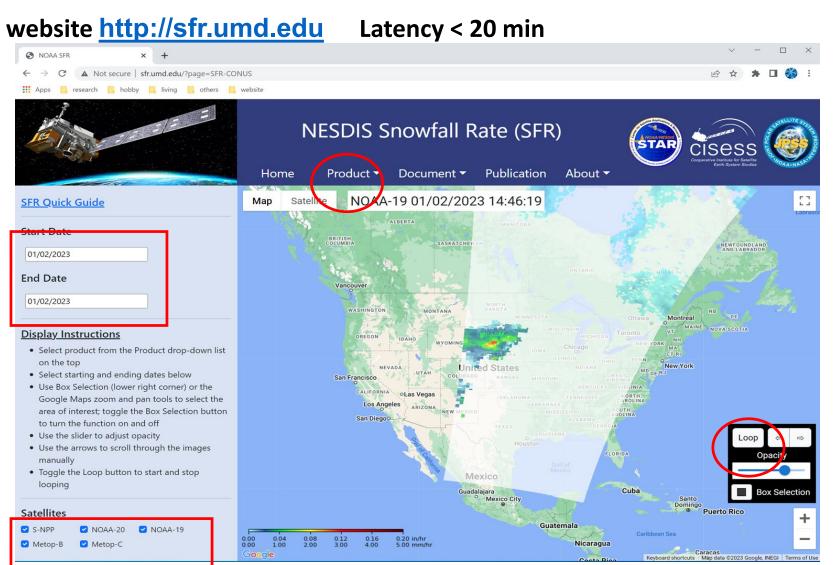
SFR from **NOAA Stage IV + CPR**, satellite Tbs, and GFS model data.

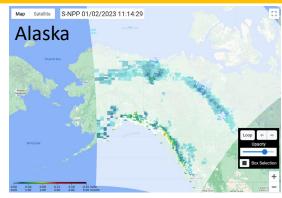
The ML-enhanced SFR shows good statistics compared with Stage IV, CPR, and ERA5: R ~ 0.6 and low biases



• mSFR (Satellite-radar merged snowfall rate product)

A combination of PWM-based SFR and Multi-Radar Multi-Sensor (MRMS) radar precipitation.


Fill observational gaps in mountainous and remote regions where radar and gauges are sparse, or radar blockage and overshooting are common.



Direct Broadcast-Based Snowfall

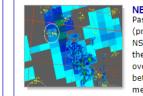
- **NCEP/CPC** CMORPH group is ingesting in the **Second-Generation CMORPH (CMORPH2)** to improve CMORPH2 for the support of nowcasting/short-term forecasting. https://www.star.nesdis.noaa.gov/jpss/EDRs/products blended cmorph.php
 - **NASA/SPORT** converts the DB SFR data to AWIPS-ingestible format and distributes it to several WFOs (weather forecast office).

https://weather.ndc.nasa.gov/sport/jpsspg/s nowfall.html

The Geographic Information Network of Alaska (GINA) produced DB SFR is distributed to NWS Alaska.

SPoRT is a NASA project to transition unique observations and research capabilities to the operational weather community to improve shortterm forecasts on a regional scale

Real-Time Data	Core Projects	GOES-R PG	JPSS PG	Transitions	Library	Organization	


NESDIS Snowfall Rate Product Details

Passive microwave swath snowfall rate derived from polar-orbiting sensors onboard S-NPP. GPM, NOAA, MetOp, DMSP. The product is displayed in liquid equivalent inches per hour with a maximum snowfall rate detection of 0.2 inches per hour when the snow to liquid ratio is 10 to 1 (i.e. 2 in/hr). The product is useful

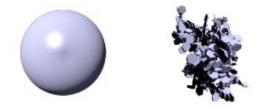
real-time data (Alaska | CONUS)

RESEARCH

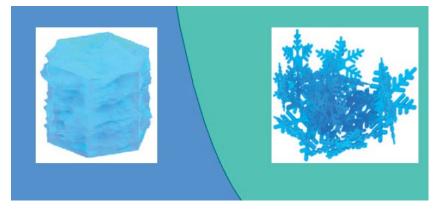
NESDIS Merged Snowfall Rate Passive microwave swath snowfall rate (product described above) combined with the NSSL Multi-Radar/Multi-Sensor data to fill in the temporal gaps between polar-orbiter overpasses. A 10-minute temporal refresh between available passive microwave measurements increases situational awareness

RESEARCH

and ability to track snowfall rate maxima.


real-time data (CONUS)

snowfall maxima



The ARTS dataset (Eriksson et al. 2018)

Ping Yang's dataset (Ren et al. 2023)

Current used ice habit: Sphere

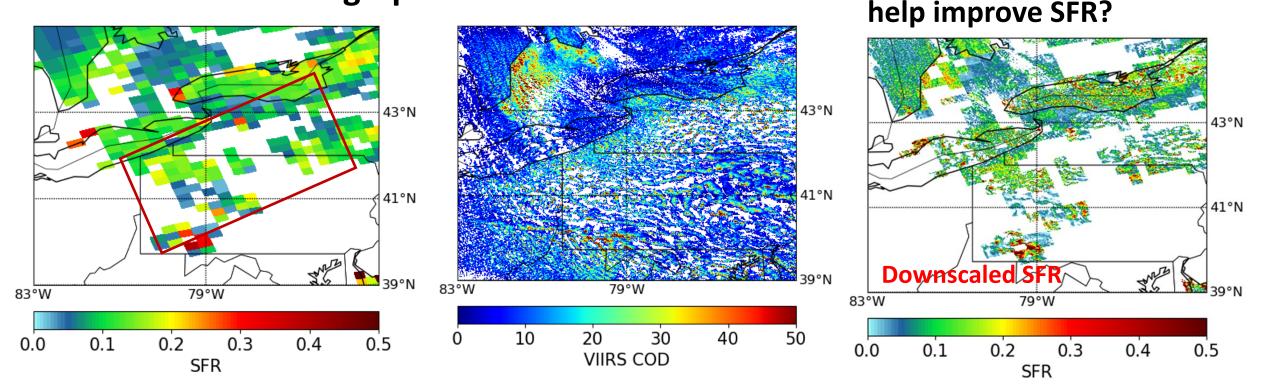
Too heavy mass, fast terminal speed, and strong extinction could lead to overestimated SFR.

A first trial of non-spherical ice habit

Comparison between PMW SFR with MRMS and Stage IV in brackets

Ice habits	Correlation	Bias (mm/h, %)	
	Coefficient (R)		
Sphere (ARTS)	0.48 (0.53)	1.07, 113 (0.80, 119)	
LargePlateAggregate(ARTS)	0.43 (0.46)	0.61, 64 (0.45, 66)	
Column+Dendrite (PY)	0.48 (0.50)	0 48, 45 (0 19, 29)	

Application of non-spherical ice habits can largely reduce the positive SFR bias from the spherical ice habit.



Other Challenges

Can data from IR sensors

Lake-effect and Orographic Snow

• Snow Variability in Small Scale

GOES-R L1 and L2 data are also explored for SFR improvement.

The NOAA/NESDIS SFR product derived from Passive Microwave Sensors

- ML-based snowfall detection has an accuracy ~ 0.8 globally, being consistent across different platforms.
- Physics-based and ML-based snowfall rate agrees well with other observations (e.g. CPR, Stage IV, etc.).
- Direct-Broadcast SFR retrieval system has been built with low latency (within 20 min), distributed to WFOs by NASA/SpoRT and GINA to support winter storm nowcasting.

On-going and future work

- Preparing SFR algorithms that will run on new missions: NOAA-21/ATMS, Metop-SG-A MWI/MWS.
- Improving snowfall rate accuracy: spatial resolution, snow microphysical and optical properties etc.

- Acknowledge NOAA's support (JPSS STAR, JPSS PGRR and NOAA HPCC)
- Thanks for the team's contribution

Contact

- Huan Meng (<u>huan.meng@noaa.gov</u>)
- Jund Dong (jundong@umd.edu)
- Yongzhen Fan (<u>yfan1236@umd.edu</u>)
- Yulan Hong (<u>yhong126@umd.edu</u>)

Check our website! website <u>http://sfr.umd.edu</u>