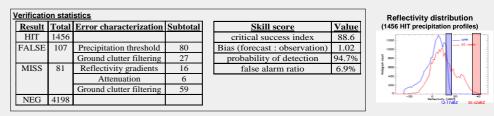
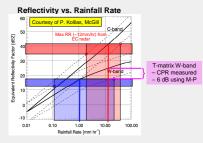

Results from the Canadian CloudSat CALIPSO Validation Project (C3VP)

Environment Environnement Canada Canada David Hudak¹, P. Rodriguez¹, H. Barker¹ ¹ Environment Canada, King City, Ontario, Canada


http://c3vp.org

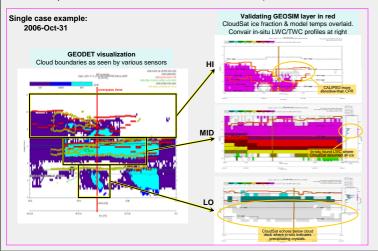

2B-CLDCLASS precipitation occurrence algorithm validation

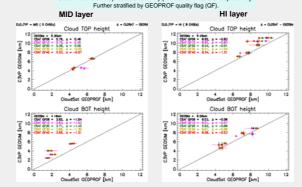
Matched EC King radar & CloudSat footprint to compare their detection of precipitation at ground occurrence (Sep-2006 to Apr-2007).

Envelopes of radar reflectivity (dBZ) as function of rainfall rate for a variety of DSD assumptions (Marshall-Palmer as solid curve) at C-band and W-band.

Horizontal boxes represent the reflectivity range of the tail of the above histogram, i.e. 12-17dbZ for CloudSat (horizontal blue box) and 35-42dBZ for C-band (red box). Vertical boxes are their representation in terms of rain rate.

2B-GEOPROF cloud occurrence algorithm validation


Different data sets providing cloud/echo boundary locations,


- 2-D: CALIPSO, airborne radar/lidars, ground radar/lidars.
- 1-D: aircraft in-situ microphysics, wx station cloud obs, upper air sounding, CARE obs.

Horizontally homogeneous areas of {HI, MID, LO} cloud layers of each overpass scene were selected for analysis. In mixed phase cases, layers of LIQ and ICE were further handled.

Representations of layer TOP & BOT are subjectively chosen to construct a GEOSIM of the CloudSat overpass scene.

Statistical analysis of GEOSIM vs. 2B-GEOPROF cloud/echo TOP & BOT performed.

All combined GEOPROF vs. GEOSIM C3VP cases

Case means and spreads shown by point and whiskers respectively

2B-GEOPROF vs. GEOSIM results			
CPR Layer	TOP	BOT	CPR thickness bias
HI	Too low (-0.83km), due to CPR sensitivity	Too low (-0.56km), due to vertical resolution and virga (interlayer echoes)	Thinner, -0.22km
MID	Good (0.06km), after removal of Convair artifact (QF20)	Too low (-1.54km), mostly due to virga	Thicker, +1.49km at QF20
LO	Good (0.06km)	Generally OK, but too high in 4 of 11 cases (+0.44km) due to ground clutter removal	Thinner, -0.33km in those 4 GC cases

Summary

• The C3VP 2006-07 field campaign successfully collected 105 flight hours of in-situ data and from CARE enhanced ground measurements captured a full fall/winter season (67 precipitation events).

 Good flight planning focused on satellite validation: above cloud top at overpass time, immediately followed by a profiling descent. At times, the Convair itself was found as an artifact within the CloudSat scene.

- Validating 2B-GEOCLASS precipitation occurrence product,
- Plus: no overall bias, good handling of attenuation
- · Minus: ground clutter, need some threshold tuning for hi IWC
- Validating 2B-GEOPROF cloud/echo occurrence product,
- HI cloud layers: too thin due to CPR sensitivity
- MID cloud layers: too thick by 1.5km mostly due to virga
- LO cloud layers: shallow bases in the winter typically lost in the ground clutter

Future work

- · Support continued CloudSat precipitation algorithm development,
 - Compare reflectivity histograms (CFADs) of the C3VP@CARE radars {WKR, VertiX, JPL W-band}.
- Solid particle habit characterization and climatology of Canadian latitudes from C3VP precip sensors @ CARE & Eureka.
- To apply matching/validation analysis on 2C-PRECIP product and other national networks {POSS, all radars, wx station obs}.

Quantitative LWC/IWC profiles comparison with aircraft in-situ and profiling radiometer data for vertical resolution features.

• Explore, why CPR reflectivities in precipitation, all <17dBZ, so low?

CloudSat/CALIPSO Science Team Meeting, Madison, Wisconsin, U.S., July 28-31, 2009.