NPOESS Preparatory Project (NPP)
Access to Data

The 14th International TOVS Study Conference
May 26, 2005
Beijing, China

Peter A. Wilczynski
NPP Program Manager
NPOESS Integrated Program Office (IPO)
Silver Spring, MD USA
Overview

- Requirements
- Mission Products
- Data Access
- Summary
Real-Time Operational Demonstrations

Use of Advanced Sounder Data for Improved Weather Forecasting/Numerical Weather Prediction

NOAA Real-Time Data Delivery Timeline
Ground Station Scenario

Joint Center for Satellite Data Assimilation

C3S → IDPS → NOAA Real-time User

NWP Forecasts

NWS/NCEP
GSFC/DAO
ECMWF
UKMO
FNMOC
Meteo-France
BMRC-Australia
Met Serv Canada

Aqua (2002)
AIRS/AMSU/HSB & MODIS

WindSat (2003)

Coriolis

METOP (2006)
IASI/AMSU/MHS & AVHRR

NPP (2008)
CrIS/ATMS
VIIRS
OMPS

NPOESS (2009-2010)
CrIS/ATMS, VIIRS, CMIS,
OMPS & ERBS
NPP Requirements Summary

- NPP programmatic requirements established by NASA Mission Level 1 Requirements document and science performance by NPOESS Integrated Operational Requirements Document (IORD).
- Key Level 1 requirements include:
 - 5 year mission lifetime.
 - Accommodation of the ATMS, CrIS, OMPS, and VIIRS instruments.
 - Concurrent operations of all instruments.
 - Real-time direct broadcast of VIIRS, CrIS, OMPS and ATMS instrument data.
 - Polar sun-synchronous orbit (824km, 20km ground track repeat, 20 day cycle, and descending equatorial crossing time of 10:30 AM).
 - Science Data Segment shall be a research tool (with no operational requirements) used to test the usefulness of NPP EDRs for accomplishing climate research.
 > SDS shall use a fully distributed interoperable architecture with 5 (nominally) independent elements (Climate Analysis Research System or CARS) organized around key EDRs.
 - Delta II Launch Vehicle with a 2008 Launch Readiness Date.
Spacecraft Progress
Ground Systems Progress

IPO Antenna Ribbon Cutting
March 1, 2005
Growing Data Volume and Rate Could Stress Processing and Archive

1960 - 2010

DMSP
(Defense Meteorological Satellite Program)

POES
(Polar Orbiting Operational Environmental Satellites)

Sensor data rate: 1.5 Mbps
Data latency: 100-150 min.
1.7 GigaBytes per day (DMSP)
6.3 GigaBytes per day (POES)

2000 - 2010

NPP
(NPOESS Preparatory Project)

EOS
(Earth Observing System)

15 Mbps sensor data rate
Data latency: 100-180 min.
Data availability: 98%
Ground revisit time: 12 hrs.
2.6 TeraBytes per day (EOS)

2010 – 2020+

NPOESS
(National Polar-orbiting Operational Environmental Satellite System)

20 Mbps sensor data rate
Data latency: 28 min.
Data availability: 99.98%
Autonomy capability: 60 days
Selective encryption/deniability
Ground revisit time: 4-6 hrs.
8.1 TeraBytes per day
Ensuring Direct Broadcast Continuity

POES/DMSP/SeaStar

- AVHRR
- SeaWiFS
- OLS
- HIRS

Terra

- MODIS

Aqua

- AMSR-E
- MODIS
- AIRS
- AMSU
- HSB

NPP

- VIIRS
- CrIS
- ATMS
- OMPS

NPOESS

- CMIS
- VIIRS
- CrIS
- ATMS
- OMPS

Spacecraft and Instrument Evolution

L-Band, S-Band
665 - 2 Mbps
BPSK

X-Band
13.1 Mbps
Convolutional
UOQPSK
NRZ-M

X-Band
15 Mbps
QPSK
NRZ-M

X-Band
15 Mbps
Convolutional
QPSK
NRZ-M

X-Band
20 Mbps/3.8 Mbps
Convolutional
QPSK
NRZ-M

Standardization and Increasing RF, Modulation, and Bandwidth Requirements

Custom Formatters and Ingest Software
Analog Custom Receivers
NOAA Level B (AVHRR)
Limited Data Distribution Mechanisms

Spacecraft Specific STPS
Level-0
Return Link Processor
Analog Configurable Receivers
MODIS Level-1
MODIS Simulcast

Reconfigurable RT-STPS
Return Link Processor
Digital Configurable Receivers
MODIS and AIRS Level-1
NEPster with Level-0 and Level-1 Data
MODIS Simulcast

Reconfigurable RT-STPS
Digital Reconfigurable Receiver (PC-based)
Select Instrument Level-1 Software
NEPster with Level-0, Level-1, and Select Level-2 Data Products
Simulcast of Select Instruments
Multi-Mission Scheduler

Evolution of Concurrent Ground Systems Supporting Technologies and Algorithm Development
NPP’s Communications

TDRS

CMD: 2067.270833 MHz
.125 & 1 kbps
TLM: 2247.5 MHz
1, 4 or 16 Kib/s

CMD 2067.270833 MHz
2 & 125 kbps
TLM 2247.5 MHz
1, 4, 16, 32 Kib/s
(Realtime)
512 Kib/s
(Stored)

NPP SPACECRAFT

TDRSS Ground Link

S-Band Omni Antenna

HARDLINE
Launch Operations Only

HARDLINE Downlink

User Terminal

Norway SVALBARD STATION

HRD Direct Downlink

S-Band Omni Antenna

SMD Antenna

7.812 GHz
15 Mbps

8.2125 GHz
300 Mbps

TDRSS WHITE SANDS STATION

CMD 2067.270833 MHz
.125 & 1 kbps
TLM: 2247.5 MHz
1, 4 or 16 Kib/s

HRD Antenna

S-Band Omni Antenna
Risk Reduction & Mitigation

• For NPP, the NASA Direct Readout Laboratory (DRL) provides risk reduction and a roadmap for the NPOESS IDPS system in the Field Terminal Segment (FTS).

• The DRL has been, and will continue to do this by providing NPP packet processing and Level-0 algorithms, real-time NPP-specific visualization tools, lessons learned and an environment for testing and validating the FTS processing system.
NPP & NPOESS Realtime Data

• Data will be available to all
 – Real time data from direct downlink sent in the clear
 – Processing software will be available to all
 – No cost other than media and shipping
 – No cost if downloaded from the net

• Domestic and International Users will be part of the development process

• IPO Realtime Data Contact
 – Mr. John Overton, IPO Field Terminal Manager
 – Email : john.overton@noaa.gov
Summary

• NPP and NPOESS will have HRD direct readout
• NPP most likely to launch in 2008
 – Technical problems with the Raytheon VIIRS instrument have caused a delay of 14-16 months to NPP
• For more information:
 – http://www.ipo.noaa.gov
 – http://jointmission.gsfc.nasa.gov