NPOESS VIIRS: Design, Performance Estimates and Applications

Carl F. Schueler, Shawn W. Miller and Jeffery J. Puschell
Raytheon Space and Airborne Systems, Goleta, California
Thomas F. Lee, Steven D. Miller, Jeffrey D. Hawkins, F. Joseph Turk and Kim Richardson
Naval Research Laboratory, Monterey, California
John Kent
Science Applications International Corporation, San Diego, California

The 14th International TOVS Study Conference, 25-31 May 2005, Beijing, China
Overview

• The National Polar-orbiting Operational Environmental Satellite System (NPOESS) Visible Infrared Imaging Radiometer Suite (VIIRS) will offer dramatic spatial, spectral, and radiometric performance improvements over current operational capabilities

• NOAA Advanced Very High Resolution Radiometer (AVHRR) offers 1 km nadir spatial resolution in 5 spectral bands

• The Defense Meteorological Satellite Program (DMSP) Operational Line-scanning System (OLS) offers near constant contrast 1.8km day-night cloud imaging and visible and thermal imagery
VIIRS

• VIIRS offers 22 band spectroradiometry comparable to NASA’s MODerate-resolution Imaging Spectroradiometer (MODIS).

• On NPP and NPOESS
• 3000 Km Swath
• Day-night cloud imagery (constant contrast 750 m resolution)
• 4:1 better edge-of-scan spatial resolution than AVHRR or MODIS
NOAA AVRRR Contributions to VIIRS Subpoint Spatial Resolution

<table>
<thead>
<tr>
<th>AVHRR</th>
<th>VIIRS</th>
</tr>
</thead>
<tbody>
<tr>
<td>.63 µm</td>
<td>Imagery, Clouds, Snow, Dust</td>
</tr>
<tr>
<td>.86 µm</td>
<td>Terrain, vegetation, water</td>
</tr>
<tr>
<td>1.6 µm</td>
<td>Snow, Cirrus Properties</td>
</tr>
<tr>
<td>3.7 µm</td>
<td>Fires, Low Clouds, SST</td>
</tr>
<tr>
<td>10.8 µm</td>
<td>Images, Cloud height, SST</td>
</tr>
<tr>
<td>11.8 µm</td>
<td>Volcanic Ash, Split Window</td>
</tr>
</tbody>
</table>

| 1.1 km | 0.37 km |

Wavelength

- .63 µm
- .86 µm
- 1.6 µm
- 3.7 µm
- 10.8 µm
- 11.8 µm
VIIRS System Provides Excellent Environmental Data Records (EDRs)

- VIIRS System Design based on integrated Sensor and Algorithms
- Engineering Development Unit (EDU) approaching integration
- EDR Science Algorithms developed, documented, and publicly released by Raytheon Technical Services Company (RTSC) Information Technology and Scientific Services (ITSS)
VIIRS VIS/NIR & IR Bands

VIIRS, MODIS, FY-1C, AVHRR

High resolution atmospheric absorption spectrum and comparative blackbody curves.

<table>
<thead>
<tr>
<th>Band No.</th>
<th>Wavelength (µm)</th>
<th>Horiz Sample Interval (km Downtrack x Crossoffset)</th>
<th>Driving EDRs</th>
<th>Radiance Range</th>
<th>Ltyp or Ttyp</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIS/NIR FPA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M1</td>
<td>0.412</td>
<td>0.742 x 0.259</td>
<td>Ocean Color Aerosols</td>
<td>Low High</td>
<td>44.9 155</td>
</tr>
<tr>
<td>M2</td>
<td>0.445</td>
<td>0.742 x 0.259</td>
<td>Ocean Color Aerosols</td>
<td>Low High</td>
<td>40 146</td>
</tr>
<tr>
<td>M3</td>
<td>0.488</td>
<td>0.742 x 0.259</td>
<td>Ocean Color Aerosols</td>
<td>Low High</td>
<td>32 123</td>
</tr>
<tr>
<td>M4</td>
<td>0.555</td>
<td>0.742 x 0.259</td>
<td>Ocean Color Aerosols</td>
<td>Low High</td>
<td>21 90</td>
</tr>
<tr>
<td>M5</td>
<td>0.672</td>
<td>0.742 x 0.259</td>
<td>Ocean Color Aerosols</td>
<td>Low High</td>
<td>10 68</td>
</tr>
<tr>
<td>M6</td>
<td>0.746</td>
<td>0.742 x 0.776</td>
<td>Atmospheric Constellation</td>
<td>Single</td>
<td>4 25</td>
</tr>
<tr>
<td>M7</td>
<td>0.865</td>
<td>0.742 x 0.259</td>
<td>Ocean Color Aerosols</td>
<td>Low High</td>
<td>6.4 33.4</td>
</tr>
<tr>
<td>CCD DNB</td>
<td>0.7</td>
<td>0.742 x 0.742</td>
<td>Imagery</td>
<td>Var. 6.72E-05</td>
<td></td>
</tr>
<tr>
<td>SAMIR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M10</td>
<td>1.61</td>
<td>0.742 x 0.776</td>
<td>Cloud Particle Size</td>
<td>Single</td>
<td>5.4</td>
</tr>
<tr>
<td>M9</td>
<td>1.378</td>
<td>0.742 x 0.776</td>
<td>Cirrus/Cloud Cover</td>
<td>Single</td>
<td>6</td>
</tr>
<tr>
<td>M16</td>
<td>2.25</td>
<td>0.742 x 0.776</td>
<td>Clouds</td>
<td>Single</td>
<td>0.12</td>
</tr>
<tr>
<td>M15</td>
<td>1.61</td>
<td>0.742 x 0.776</td>
<td>Snow Fraction</td>
<td>Single</td>
<td>7.3</td>
</tr>
<tr>
<td>M14</td>
<td>2.25</td>
<td>0.742 x 0.776</td>
<td>Imagery Clouds</td>
<td>Single</td>
<td>270 K</td>
</tr>
<tr>
<td>M13</td>
<td>4.05</td>
<td>0.742 x 0.259</td>
<td>SST</td>
<td>Low High</td>
<td>300 K 380 K</td>
</tr>
<tr>
<td>L1R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M14</td>
<td>0.55</td>
<td>0.742 x 0.776</td>
<td>Cloud Top Properties</td>
<td>Single</td>
<td>270 K</td>
</tr>
<tr>
<td>M15</td>
<td>1.075</td>
<td>0.742 x 0.776</td>
<td>SST</td>
<td>Single</td>
<td>300 K</td>
</tr>
<tr>
<td>M10</td>
<td>1.61</td>
<td>0.742 x 0.776</td>
<td>Cloud Imagery</td>
<td>Single</td>
<td>210 K</td>
</tr>
<tr>
<td>M16</td>
<td>12.013</td>
<td>0.742 x 0.776</td>
<td>SST</td>
<td>Single</td>
<td>300 K</td>
</tr>
</tbody>
</table>

Driving EDRs

- Ocean Color Aerosols
- Atmospheric Contellation
- Imagery
- Cloud Particle Size
- Cirrus/Cloud Cover
- Binary Snow Map
- Snow Fraction
- Imagery Clouds
- SST
- Cloud Top Properties
- Cloud Imagery
- SST
Finer Sampling, Spatial Resolution & Better Sensitivity

SNR predicted and specified at worst-case edge of scan:
~60% better nadir SNR and finer spatial resolution

@ Nadir

@ ~1500 km

@ ~3000 km

Fine-Resolution Imaging ‘I’ Bands

Moderate-Resolution ("Radiometric") ‘M’ Bands
AVHRR VISIBLE SIMULATION

Nadir

Edge of Scan
VIIRS VISIBLE SIMULATION

Nadir

Edge of Scan
San Diego – MODIS Edge
San Diego – MODIS Nadir
GOES versus MODIS
Quality of Subsectors

MODIS

2300 km

VIIRS

3000 km
VIIRS value to forecasters multiplied by efficient data delivery!

- 95% of data delivered within 28 min to central processing stations
- Average delivery time 10.5 min
- Current prototypes using MODIS have latency 2-3 hours
Publicly accessible demonstration of Satellite Products over the continental United States:

1. Simulate future NPOESS capabilities in public forum

2. Near-realtime display of products, some not previously available (e.g., nighttime visible)
NexSat: Web Design
NexSat: 250m City Zooms
NexSat: Dust Storms

True Color

Dust Enhancement

Lake Tahoe
Nevada
California

Dust Plume
NexSat: Aircraft Contrails

“Racetrack” flight pattern
NexSat: Fire Detection
NexSat: Cloud/Snow Discrimination

- Complex snow/cloud scenes during winter in Southwest Asia
- Difficult to distinguish clouds from snow in single visible and window-infrared channels
- The ability to determine the presence of cloud over a snow field is useful to targeting, surveillance, navigation, etc.
DayNight Band (DNB) Constant Resolution

- Purpose: Replicate OLS capability but with updated technology and improvements

- 0.5 -- 0.9 μm broadband visible

- Detectors are aggregated to produce near-constant resolution

- More detectors aggregated near nadir for high SNR; fewer aggregated near edge for lower SNR
DNB “Constant Contrast”

<table>
<thead>
<tr>
<th>Three Gains</th>
<th>Relative Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>119,000</td>
</tr>
<tr>
<td>Medium</td>
<td>477</td>
</tr>
<tr>
<td>Low</td>
<td>1</td>
</tr>
</tbody>
</table>

- Improves SNR at low radiances
- All pixels are imaged with all three gains
- Onboard processing selects the most sensitive gain setting without saturation for transmission to the ground
- Goal is “constant contrast” imagery
DMSP (F14) Terminator Image
Full Moon
DMSP OLS

NGDC Poster
No Moon
Full Moon
98% full, 48.1° Elevation
VIIRS Improvement for DNB

<table>
<thead>
<tr>
<th>DMSP OLS</th>
<th>NPOESS VIIRS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 64 Gray shades</td>
<td>64 X = 4096 Gray shades</td>
</tr>
<tr>
<td>2. 2.2 km Field of View</td>
<td>0.75 km Field of View</td>
</tr>
<tr>
<td>3. Limited Pixel Expansion</td>
<td>No Pixel Expansion</td>
</tr>
<tr>
<td>4. Numerous Image Artifacts</td>
<td>Artifacts Eliminated</td>
</tr>
</tbody>
</table>
Lights over Korea

Image and data processing by NOAA’s National Geophysical Data Center. DMSP data collected by US Air Force Weather Agency.
OLS Lightning Detection

National Lightning Detection Network (Cloud-to-Ground Strikes)
Red = 0-30 min old
Blue = 30-60 min old
Near-Realtime Polar Products from NexSat

Conclusions

- VIIRS adds advanced capability not available from MODIS
- NPOESS will truly be a forecaster’s system
- Constant-Contrast/Constant-Resolution Data will produce vivid, information-rich images for DNB
- Preservation of footprint size will facilitate much more usable images
- VIIRS fine channels replicate the capability of AVHRR
- Many products in addition to EDRs
- True color capability preserved for VIIRS