Dynamic inference of background error correlation between surface skin and air temperature

Louis Garand, Mark Buehner, and Nicolas Wagneur
MSC, Dorval, P. Quebec, Canada

Thirteen ISTC Conference,
Sainte-Adele, Quebec, 29 Oct - 4 Nov 2003
Motivation

• Improve low level (P > 850 hPa) temperature analyses from the assimilation of surface sensitive IR radiances. Assimilate these channels routinely over land.

• Make use of ensemble forecasts to obtain flow-dependent information important for data assimilation, namely the $T_{\text{skin}} - T_{\text{air}}$ (hereafter $T_s - T_a$) background error correlation.

• Pave the way for an analysis of T_s over land using both radiances and T_a observations.
IM-4 Temperature Jacobian for a tropical profile (emi=0.97)

Note: Ts Jacobian $\frac{dT_s}{dT} = 0.31$ K/K
Background error correlation (vertical)

- Essential in data assimilation. Allows observations at one level to influence the analysis at neighbouring levels.

- $T_s - T_a$ correlation most often ignored (0) or arbitrary (0.5). For IR surface channels, this implies a non-optimal compromise between corrections to T_s and T_a minimizing the difference between observed BT and background-equivalent BT.

- Problem: the $T_s - T_a$ error correlation varies locally depending on how much these variables are related. Ensemble forecasts likely represent the best way to infer that correlation + all others needed.
Ensemble forecasts

- We use 64 members representing 64 6-h forecasts. The forecasts use the same forecast model and differ only from perturbations of observations of all types according to their respective error estimates.

- T_s is fixed over oceans (SST analysis) and predicted over land. Variables most influencing land T_s are temperature and humidity. No T_s-T_a error correlation can be inferred over oceans. Satellite radiances influencing T_s are not present in the analyses.

- T_s-T_a error correlation fields are obtained from the deviation of each variable with respect to the local mean. Local variances are computed as well.
Link between Ts-Ta error correlation from ensemble forecasts and surface inversions

Ts-Ta error correlation

06 UTC June 02

Ts minus Ta

06 UTC June 02

18 UTC June 03

Ts-Ta error correlation

18 UTC June 03

Ta is lowest predictive level near 70 m.
Experiments

• 4 analyses: 2 times x 2 modes of correlation
 06 UTC and 18 UTC, June 2, 2002 with
 T_s-T_a correlation set to: 0.0 and to that from ensembles
 Error correlation between T_s and T_a levels above 70 m
 deduced from the interlevel T_a-T_a error correlation

• Use operational data + GOES-East and West IM4 (11μ)
 and IM5 (12μ) radiances in clear regions (sensitive to
 T_s and low level temperature and humidity)

• Horizontal length scale set to $L= 100$ km for T_s:
 significant influence of observations up to $2L$.
 T_a length scale is about 200 km in entire column
T_s increments with and without $T_s - T_a$ error correlation

without

06 UTC

with

18 UTC
Effect of $T_s - T_a$ error correlation on T_a increments

T_a inc (with correl)

inc diff (with -without correl)

06 UTC

18 UTC
Impact on 12 UTC Ta (70m) analysis: with minus without Ts-Ta correlation

- Radiosondes not assimilated: kept as independent verification
Comparison of 12 UTC analyses against radiosondes (radiosondes not assimilated)

Grand Junction, CO: improved T

Kelowna, BC: improved T, Td

Black: radiosonde Blue: without correlation Red: with correlation
full: Temp dashed: dew point spread
Other comparisons

Reno, Nevada: improved T, T_d

Kuujjuak, Que: deteriorated T due to horiz. correl. impact in transition area

Black: radiosonde Blue: without correlation Red: with correlation
full: Temp dashed: dew point spread
Conclusion

• The T_s-T_a error correlation can induce changes of the order of 1 K in the boundary layer from the assimilation of surface sensitive IR channels. The analysis of T_s is also improved in principle.

• Ensemble forecasts provide a powerful tool to infer this correlation and thus make use of local, flow dependent information.

• Impact as expected. Horiz. resolution and correlation effects require more investigation.
Example of T_a profile increment with/without correlation

Correlation = +0.86; lat=29.8 N. lon=250.9 E, 6 UTC June 2, 2002

$\eta = \frac{(P-Po)}{(P-Ps)}$

- blue: without correlation; T_s increment = +3.3 K
- black: with correlation; T_s increment = +2.9 K

$BT4(\text{obs-calc}) = +1.69$ K; $BT5(\text{obs-calc}) = +1.54$ K
Link between T_s-T_a error correlation and surface inversions

T_s-T_a error correlation
12 UTC June 02

Ts minus Ta
12 UTC June 02

00 UTC June 03

T_a is lowest predictive level near 70 m.