Tangent Linear and Adjoint Coding Short Course
Day 3
Jacobian (or K) Coding

Thomas J. Kleespies
Room 810
Review of Day 2 Problem Set
TL Subroutine part 1

Do ichan = 1 , M

! Initialize integrator
 Sum_TL=0.

! Compute tl radiance for first level
 Call Planck_TL(Vnu(ichan),T(1),T_TL(1),B(1,Ichan),B_TL(1))

! Now compute radiances for the rest of the levels
Do level=2,N
 Call Planck_TL(Vnu(ichan),T(level),T_TL(level),B(level,Ichan),B_TL(level))

 (B_TL(level-1) + B_TL(level))* (Tau_TL(level-1,ichan)-Tau_TL(level,ichan))
 + (B (level-1,ichan)+B (level,ichan))* (Tau_TL(level-1,ichan)-Tau_TL(level,ichan))
EndDo
! Surface term, ignoring downward reflected

Call Planck_TL(Vnu(ichan),Tskin,Tskin_TL,Bs(Ichan),Bs_TL)

!Sum=Sum+Bs*Tau(N,ichan)*Emiss(ichan) ! forward left commented in place for comparison
Sum_TL = Sum_TL + Bs_TL *Tau(N,ichan) *Emiss(ichan) &
 + Bs(ichan) *Tau_TL(N,ichan)*Emiss(ichan) &
 + Bs(ichan) *Tau(N,ichan) *Emiss_TL(ichan)

! Now brightness temperature
Tb_TL(ichan) = 0
If(TotalRad(Ichan).gt.0.) Then
 Tb_TL(ichan) =
 Bright_TL(Vnu(ichan),TotalRad(Ichan),Sum_TL,BC1(ichan),BC2(ichan))
EndIf

EndDo ! ichan
Do ichan = 1, M ! don't need to reverse this loop
 ! because there is no interchannel dependence

Sum_AD = 0.0 ! want to segregate channels
Bs_AD = 0.0 ! so zero here
B_AD = 0.0
 ! Don't zero Tau_AD and Emiss_AD because they come in from outside
! Now brightness temperature
If(TotalRad(Ichan).gt.0.) Then
 CallBright_AD(Vnu(ichan),TotalRad(Ichan), &
 Sum_AD,BC1(ichan),BC2(ichan),Tb_AD(ichan))
EndIf

Bs_AD = Bs_AD + Sum_AD *Tau(N,ichan) *Emiss(ichan)
Tau_AD(N,ichan) = Tau_AD(N,ichan) + Bs(ichan) *Sum_AD *Emiss(ichan)
Emiss_AD(ichan) = Emiss_AD(ichan) + Bs(ichan) *Tau(N,ichan) *Sum_AD

! Surface term, ignoring downward reflected

! WARNING... WHAT IF WE NEED Bs_AD elsewhere... keep this in mind.
Call Planck_AD(Vnu(ichan),Tskin,Tskin_AD,Bs(Ichan),Bs_AD)

! Now compute radiances for the rest of the levels

AD Subroutine part 2

Do level = N , 2 , -1 ! this loop needs to be reversed because of vertical ! dependencies

 B_AD(level-1) = B_AD(level-1) +.5* Sum_AD* (Tau(level-1,ichan)-Tau(level,ichan))
 B_AD(level) = B_AD(level) +.5* Sum_AD* (Tau(level-1,ichan)-Tau(level,ichan))

 Tau_AD(level-1,ichan) = Tau_AD(level-1,ichan) &
 +.5*(B(level,ichan)+B(level-1,ichan))*Sum_AD
 Tau_AD(level ,ichan) = Tau_AD(level ,ichan) &
 -.5*(B(level,ichan)+B(level-1,ichan))*Sum_AD

 Call Planck_AD(Vnu(ichan),T(level),T_AD(level),B(level,Ichan),B_AD(level))

EndDo

! Compute AD for first level

 Call Planck_AD(Vnu(ichan),T(1),T_AD(1),B(1,Ichan),B_AD(1))

EndDo ! ichan
Real Fin (940)
Real TLin(nTLin)
Real ADout(nADout)

! Forward input vector
Equivalence (Fin(1), T)
Equivalence (Fin(47), Tau)
Equivalence (Fin(921), Emiss)
Equivalence (Fin(940), Tskin)

! TL input vector
Equivalence (TLin(1), T_TL)
Equivalence (TLin(47), Tau_TL)
Equivalence (TLin(921), Emiss_TL)
Equivalence (TLin(940), Tskin_TL)

! AD output vector
Equivalence (ADout(1), T_AD)
Equivalence (ADout(47), Tau_AD)
Equivalence (ADout(921), Emiss_AD)
Equivalence (ADout(940), Tskin_AD)

Real Tb (Nchan) ! brightness temperature
Real Tb_TL(nTLout) ! brightness temperature TL
Real Tb_AD(nADin) ! brightness temperature AD

Real TLout(nTLout)
Real ADin (nADin)
Equivalence(TLout,Tb_TL)
Equivalence(ADin, Tb_AD)
Real TL(nTLin,nTLout) ! TL Jacobian Matrix
Real AD(nADin,nADout) ! AD Jacobian Matrix
! compute forward model values and variables here for use with TL and AD
Call Compbright_Save(Vnu,T,Tau,Tskin,Emiss,BC1,BC2,Nlevel,Nchan,Tb)

! Form TL Jacobian matrix
Do i = 1 , nTLin
 TLin = 0.0
 TLout = 0.0
 TLin(i) = 1.0
 Call Compbright_Save_TL(Vnu, T, T_TL, Tau, Tau_TL, Tskin,Tskin_TL, Emiss,Emiss_TL, BC1,BC2,Nlevel,Nchan, Tb, Tb_TL)
 TL(i,1:nTLout) = TLout(1:nTLout)
EndDo ! TL loop

! Form AD Jacobian matrix
Do j = 1 , nADin
 ADin = 0.0
 ADout = 0.0
 ADin(j) = 1.0
 Call Compbright_Save_AD(Vnu, T, T_AD, Tau, Tau_AD, Tskin,Tskin_AD, Emiss,Emiss_AD, BC1,BC2,Nlevel,Nchan, Tb, Tb_AD)
 AD(j,1:nADout) = ADout(1:nADout)
EndDo ! TL loop

AD Testing - Filling Matrices
Do i = 1 , nTLout
 Do j = 1 , nADout
 If(TL(j,i) /= AD(i,j)) Then
 ktall = ktall + 1 ! counter for total unequal
 EndIf
 If(TL(j,i) == 0.0) Then
 Write(68,6192) i,j,TL(j,i), AD(i,j) , ' AD'
 KtAD = KtAD + 1
 EndIf
 If(AD(i,j) == 0.0) Then
 Write(68,6192) i,j,TL(j,i), AD(i,j) , ' TL'
 KtTL = KtTL + 1
 EndIf
 If(TL(j,i) /= 0.0 .and. AD(i,j) /= 0.0) Then
 If(abs((TL(j,i) - AD(i,j)) / TL(j,i)) < 1.e-12) Then
 Write(68,6192) i,j,TL(j,i), AD(i,j) , ' close',(TL(j,i) - AD(i,j)) / TL(j,i)
 KtClose = KtClose + 1
 Else
 Write(68,6192) i,j,TL(j,i), AD(i,j) , ' both ',(TL(j,i) - AD(i,j)) / TL(j,i)
 KtBad = KtBad + 1
 EndIf
 EndIf ! tl /= ad
 EndDo
EndDo

AD Testing – The Final Test
Adjoint Testing Results

1 2 0.1633989889760E-02 0.1633989889760E-02 close 0.1327061053780E-15
1 3 0.3174658014545E-02 0.3174658014545E-02 close -0.4098213417073E-15
1 4 0.5125247936936E-02 0.5125247936936E-02 close -0.1692331275796E-15
1 5 0.7920142828543E-02 0.7920142828543E-02 close 0.2190267920075E-15
1 6 0.1833180437177E-01 0.1833180437177E-01 close 0.3785166895296E-15
1 7 0.3748511350924E-01 0.3748511350924E-01 close -0.1851106547189E-15
1 8 0.4503646633803E-01 0.4503646633803E-01 close -0.1540727874125E-15
1 12 0.4086103064603E-01 0.4086103064603E-01 close -0.1698169085361E-15
1 13 0.4823906210725E-01 0.4823906210725E-01 close 0.1438438808881E-15

1272 Total elements not matching
1272 Elements that are close
 0 Elements AD /= 0, TL = 0
 0 Elements TL /= 0, AD = 0
 0 Elements just don't agree
Jacobian, or K code development and testing is the easiest of the three.
The Jacobian code is often called the K code. The reason is historical, and that’s all I know.
Our objective is the Jacobian

\[
K(x)^T = \begin{bmatrix}
\frac{\partial R_1}{\partial T_1} & \frac{\partial R_2}{\partial T_1} & \frac{\partial R_3}{\partial T_1} & \cdots & \frac{\partial R_m}{\partial T_1} \\
\frac{\partial R_1}{\partial T_2} & \frac{\partial R_2}{\partial T_2} & \frac{\partial R_3}{\partial T_2} & \cdots & \frac{\partial R_m}{\partial T_2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\frac{\partial R_1}{\partial T_n} & \frac{\partial R_2}{\partial T_n} & \frac{\partial R_3}{\partial T_n} & \cdots & \frac{\partial R_m}{\partial T_n} \\
\frac{\partial q_1}{\partial R_1} & \frac{\partial q_1}{\partial R_2} & \frac{\partial q_1}{\partial R_3} & \cdots & \frac{\partial q_1}{\partial R_m} \\
\frac{\partial q_2}{\partial R_1} & \frac{\partial q_2}{\partial R_2} & \frac{\partial q_2}{\partial R_3} & \cdots & \frac{\partial q_2}{\partial R_m} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\frac{\partial q_n}{\partial R_1} & \frac{\partial q_n}{\partial R_2} & \frac{\partial q_n}{\partial R_3} & \cdots & \frac{\partial q_n}{\partial R_m}
\end{bmatrix}
\]
Adjoint Output

\[\frac{\partial R}{\partial T_1} \]
\[\frac{\partial R}{\partial T_2} \]
\[\vdots \]
\[\frac{\partial R}{\partial T_n} \]
\[\frac{\partial R}{\partial q_1} \]
\[\frac{\partial R}{\partial q_2} \]
\[\vdots \]
\[\frac{\partial R}{\partial q_n} \]

\[K(x)^T = \begin{bmatrix} \frac{\partial R}{\partial T_1} \\ \frac{\partial R}{\partial T_2} \\ \vdots \\ \frac{\partial R}{\partial T_n} \\ \frac{\partial R}{\partial q_1} \\ \frac{\partial R}{\partial q_2} \\ \vdots \\ \frac{\partial R}{\partial q_n} \end{bmatrix} \]

For a single call to AD, output is derivative of all channel radiances with respect to each element of the input state vector.
We need to distribute the adjoint level derivatives through the number of channels.
How to do this

• Examine the outputs of the AD.
• Add a channel dimension to those that do not have one.
• Add a channel loop if necessary.

• In general, low level routines K code is same as AD. Save channel loop for higher level routines.
Recommended Jacobian Naming Conventions

There is no ‘standard’ naming convention. Here is what I recommend:

• Keep forward model variable names the same

• Append “_K” to forward model variable and routine names to describe Jacobian variables and routines
Subroutine Planck_AD(V, Temp, Temp_AD, B, B_AD)
! Computes Planck AD wavenumber V, Radiance B, temperature Temp and B_AD
Implicit None
Real V ! Input wavenumber
Real B ! Input Radiance mW m$^{-2}$ sr$^{-1}$ (cm$^{-1}$)$^{-1}$
Real Temp ! Input Temperature (K)
Real Temp_AD ! Output AD Temperature
Real B_AD ! Input AD Radiance
Real C1 /1.1905e-5/
Real C2 /1.4385/

Temp_AD = Temp_AD + C2*V*B*B_AD*exp(C2*V/Temp)/(C1*V*V*V*Temp*Temp)

Return
End Subroutine Planck_AD

Subroutine Planck_K(V, Temp, Temp_K, B, B_K)
! Computes Planck K, wavenumber V, temperature Temp, Temp_K, Radiance B and B_K
Implicit None
Real V ! Input wavenumber
Real B ! Input Radiance mW m$^{-2}$ sr$^{-1}$ (cm$^{-1}$)$^{-1}$
Real Temp ! Input Temperature (K)
Real Temp_K ! Output K Temperature
Real B_K ! Input K Radiance
Real C1 /1.1905e-5/
Real C2 /1.4385/

Temp_K = Temp_K + C2*V*B*B_K*exp(C2*V/Temp)/(C1*V*V*V*Temp*Temp)

Return
End Subroutine Planck_K
First examine AD outputs to see which variables need a channel dimension.

Subroutine CompBright_Save_AD(Vnu,T,T_AD,Tau,Tau_AD, & Tskin,Tskin_AD,Emiss,Emiss_AD,& BC1,BC2,N,M, & Tb,Tb_AD)

Active Variables

N levels

M channels

Real T_AD(N) ! Need to expand by channel
Real Tau_AD(N,M) ! This is OK
Real Tskin_AD ! Need to expand by channel
Real Emiss_AD(M) ! This is OK
Second: Add the channel dimension to these variables in declaration and assignment statements

This is within channel loop:

Call Planck_AD &
(Vnu(ichan), T(level), T_AD(level), B(level, Ichan), B_AD(level))

Call Planck_K &
(Vnu(ichan), T(level), T_K(level, Ichan), B(level, Ichan), B_K(level))

If necessary, add channel loop.

You do not have do add a channel loop in your code.
Jacobian Testing

• Goal is to assure that Jacobian is consistent with adjoint.

• Done by making sure that the sum by channel of the Jacobian elements matches the corresponding Adjoint element.
\[K(x)^T = \begin{bmatrix}
\frac{\partial R_1}{\partial T_1} & \frac{\partial R_2}{\partial T_1} & \frac{\partial R_3}{\partial T_1} & \ldots & \frac{\partial R_m}{\partial T_1} \\
\frac{\partial R_1}{\partial T_2} & \frac{\partial R_2}{\partial T_2} & \frac{\partial R_3}{\partial T_2} & \ldots & \frac{\partial R_m}{\partial T_2} \\
\frac{\partial R_1}{\partial T_n} & \frac{\partial R_2}{\partial T_n} & \frac{\partial R_3}{\partial T_n} & \ldots & \frac{\partial R_m}{\partial T_n} \\
\frac{\partial q_1}{\partial R_1} & \frac{\partial q_2}{\partial R_2} & \frac{\partial q_3}{\partial R_3} & \ldots & \frac{\partial q_m}{\partial R_m} \\
\frac{\partial q_1}{\partial R_2} & \frac{\partial q_2}{\partial R_2} & \frac{\partial q_3}{\partial R_3} & \ldots & \frac{\partial q_m}{\partial R_m} \\
\frac{\partial q_1}{\partial R_n} & \frac{\partial q_2}{\partial R_n} & \frac{\partial q_3}{\partial R_n} & \ldots & \frac{\partial q_m}{\partial R_n} \\
\frac{\partial q_n}{\partial R_1} & \frac{\partial q_n}{\partial R_2} & \frac{\partial q_n}{\partial R_3} & \ldots & \frac{\partial q_n}{\partial R_m}
\end{bmatrix} \quad \text{and} \quad K(x)^T = \begin{bmatrix}
\frac{\partial R}{\partial T_1} \\
\frac{\partial R}{\partial T_2} \\
\frac{\partial R}{\partial T_n} \\
\frac{\partial R}{\partial q_1} \\
\frac{\partial R}{\partial q_2} \\
\frac{\partial R}{\partial q_n}
\end{bmatrix}
\]

\[\sum_{i=1}^{m} \frac{\partial R_m}{\partial x_j} K = \frac{\partial R}{\partial x_j} \]
K Code Testing

1. Call Adjoint with ALL inputs set to unity. Make sure you have zeroed all outputs.

2. Call K with ALL inputs set to unity. Make sure you have zeroed all outputs.

3. For each level/variable, sum the channels of K. This should be equal to AD to within machine precision.

4. If an element of both K and AD equal zero, this is probably OK.
K Code Testing- Exception

If the AD output variable has a channel dimension, don’t sum the K output by channel. Compare the AD and K variables element by element. In your code this is Tau_AD, Tau_K, Emiss_AD, Emiss_K.
Machine Precision Considerations

Test that
\[\text{Abs}(K-AD)/AD < MP \]

Rule of thumb:
\[MP = 1.\text{e}-7 \text{ for Single precision} \]
\[MP = 1.\text{e}-12 \text{ for Double precision} \]
Pitfalls

If you compute $\text{Abs}(K-AD)/AD$ and find that you get a number like $1, 2, \frac{1}{2}$, (an integer or a fraction with one over an integer in the denominator) you probably are summing over channels too many times. Comment out the channel loop from a low level routine and repeat test.
! Ke is summed jacobian... should be equal to AD
Do j = 1 , nADout

If(Ke(j) /= AD(j)) Then ! Test if unequal
 ktall = ktall + 1 ! counter for total unequal
 Write(68,6192) j,Ke(j), AD(j) , ' found',(AD(j) - Ke(j)) / AD(j)
 If(Ke(j) == 0.0) Then ! K = 0, AD not
 Write(68,6192) j,Ke(j), AD(j) , ' AD'
 KtAD = KtAD + 1
 EndIf

 If(AD(j) == 0.0) Then ! AD = 0, K not
 Write(68,6192) j,Ke(j), AD(j) , ' K'
 KtKe = KtKe + 1
 EndIf

 If(K(j) /= 0.0 .and. AD(j) /= 0.0) Then ! Both not eq 0
 If(abs((AD(j) - Ke(j)) / AD(j)) < 1.e-12) Then ! But close enough
 Write(68,6192) j,Ke(j), AD(j) , ' close',(AD(j) - Ke(j)) / AD(j)
 KtClose = KtClose + 1
 Else ! BAD BAD BAD
 Write(68,6192) j,Ke(j), AD(j) , ' both ',(AD(j) - Ke(j)) / AD(j)
 KtBad = KtBad + 1
 EndIf
 EndIf
EndIf ! Ke /= ad

EndDo
Assignment for Today

• Write COMPBRIGHT_SAVE_K.F90 based upon COMBRIGHT_SAVE_AD which I have provided.
• Test this routine using techniques we have learned today.
• Don’t dilly dally.
• We will meet back here at 4PM.
Review of Assignment
1: Identify the active K variables that need a dimension in channels

Real T(N)
Real T_K(N,M)
Real Tau(N,M)
Real Tau_K(N,M)
Real Tskin
Real Tskin_K(M)
Real Emiss(M)
Real Emiss_K(M)
2: Make sure that the K variables are accumulated by channel

Call Planck_K(Vnu(ichan),Tskin,Tskin_K(Ichan),Bs(Ichan),Bs_K)
Call Planck_K(Vnu(ichan),T(level),T_K(level,Ichan), &
 B(level,Ichan),B_K(level))
Call Planck_K(Vnu(ichan),T(1),T_K(1,Ichan),B(1,Ichan),B_K(1))

Other than re-naming the routine and variable names from _AD
to _K, above is the only code changes necessary.
! Forward input vector
Equivalence (Fin(1), T)
Equivalence (Fin(47), Tau)
Equivalence (Fin(921), Emiss)
Equivalence (Fin(940), Tskin)

! K output vector
Equivalence (Kout(1), T_K)
Equivalence (Kout(875), Tau_K)
Equivalence (Kout(1749), Emiss_K)
Equivalence (Kout(1768), Tskin_K)

! AD output vector
Equivalence (ADout(1), T_AD)
Equivalence (ADout(47), Tau_AD)
Equivalence (ADout(921), Emiss_AD)
Equivalence (ADout(940), Tskin_AD)

! K equivalent output vector
Equivalence (Keout(1), T_Ke)
Equivalence (Keout(47), Tau_Ke)
Equivalence (Keout(921), Emiss_Ke)
Equivalence (Keout(940), Tskin_Ke)

Real Tb (Nchan) ! brightness temperature
Real Tb_K (nKin) ! brightness temperature K
Real Tb_AD(nADin) ! brightness temperature AD

Real Kin (nKin)
Real ADin (nADin)

Equivalence(Kin, Tb_K)
Equivalence(ADin, Tb_AD)

Real K (nKout)
Real AD(nADout)
Real Ke(nKeout)
Kin = 1.0
Kout = 0.0
Keout= 0.0
Call Compbright_Save_K (Vnu, &
 T, T_K, &
 Tau, Tau_K, &
 Tskin,Tskin_K, &
 Emiss,Emiss_K, &
 BC1,BC2,Nlevel,Nchan, &
 Tb, Tb_K)

Do i = 1 , Nchan
 Tskin_Ke = Tskin_Ke + Tskin_K(i)
 Do j = 1 , Nlevel
 T_Ke(j) = T_Ke(j) + T_K(j,i)
 EndDo
EndDo

Tau_Ke = Tau_K
Emiss_Ke = Emiss_K ! Don’t compress Tau_k and emiss_k because they are naturally mxn in AD

Ke = Keout

! Compute AD
ADin = 1.0
ADout = 0.0
Call Compbright_Save_AD(Vnu, &
 T, T_AD, &
 Tau, Tau_AD, &
 Tskin,Tskin_AD, &
 Emiss,Emiss_AD, &
 BC1,BC2,Nlevel,Nchan, &
 Tb, Tb_AD)

AD = ADout
Single precision. Double precision reveals no differences.

<table>
<thead>
<tr>
<th></th>
<th>Single Precision</th>
<th>Double Precision</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>0.2418907582760E+00</td>
<td>0.2418907433748E+00</td>
<td>-0.6160286147860E-07</td>
</tr>
<tr>
<td>18</td>
<td>0.2083575427532E+00</td>
<td>0.2083575576544E+00</td>
<td>0.7151725611720E-07</td>
</tr>
<tr>
<td>22</td>
<td>0.2486892938614E+00</td>
<td>0.2486893236637E+00</td>
<td>0.119837566486E-06</td>
</tr>
<tr>
<td>27</td>
<td>0.2785069644451E+00</td>
<td>0.2785069942474E+00</td>
<td>0.107007446829E-06</td>
</tr>
<tr>
<td>28</td>
<td>0.3823396861553E+00</td>
<td>0.3823396563530E+00</td>
<td>-0.7794724155019E-07</td>
</tr>
<tr>
<td>30</td>
<td>0.4918318092823E+00</td>
<td>0.4918317794800E+00</td>
<td>-0.605945449314E-07</td>
</tr>
<tr>
<td>32</td>
<td>0.4514432251453E+00</td>
<td>0.4514432549477E+00</td>
<td>0.6601565871733E-07</td>
</tr>
<tr>
<td>41</td>
<td>0.5664035081863E+00</td>
<td>0.5664035677910E+00</td>
<td>0.1052335250051E-06</td>
</tr>
<tr>
<td>46</td>
<td>0.9583471715450E-01</td>
<td>0.9583472460508E-01</td>
<td>0.7774406185490E-07</td>
</tr>
</tbody>
</table>

- 9 Total elements not matching
- 0 Elements that are close
- 0 Elements AD /= 0, K = 0
- 0 Elements Ke /= 0, AD = 0
- 0 Elements just don't agree
We have now seen four ways to compute Jacobians

1. Finite differencing – $2N+1$ -forward calcs
2. Tangent Linear – N -TL calcs
3. Adjoint – M -AD calcs
4. K - ~ 3 forward calcs
Using the code

• In real life, just the forward and K codes are used.
• The K code is called with just the brightness temperatures (or equivalent input) set to unity.
• DO NOT throw out the TL and AD codes. You will need them if you make any changes to the forward model. These changes MUST be propagated through the TL, AD and K and tested each step of the way.
Congratulations! You are now Adjoint Programmers, or you will be when you finish all of the assignments.