Optical Path Transmittance: OPTRAN. Forward and Adjoint Modeling

Thomas J. Kleespies
ORA/STAR
Traditional Fast Transmittance Model

- Interpolate $T(P)$, $q(P)$ to fixed pressure levels
- Predictors T, q
- Include zenith angle as a predictor
- Predictand is transmittance departure or optical depth, multiple linear regression
Optical Path Transmittance (OPTRAN) approach

- Regression on levels of absorber amount
- Predictors are a function of T, P, q
- Zenith angle implicit in absorber amount
- Arbitrary pressure profile permitted
- Predictand is absorption coefficient for H2O, O3, mixed gases
- Permits changes to ‘mixed gas’ amounts as well
Heritage

- McMillin, Fleming and Hill (AO,1979)
- McMillin, Crone, Goldberg, Kleespies (AO,1995)
- McMillin, Crone, Kleespies (AO,1995)
- Three papers in the works
OPTRAN performance

• Water vapor channel much better than RTTOV
• Temperature channels generally not quite as good as RTTOV (before McMillin improvements)
What’s this adjoint stuff it all about?

1DVAR / maximum probability solution is that which minimizes a ‘cost’ or ‘penalty function:

\[J(x) = (x - x^b)^T B^{-1} (x - x^b) + (y^o - y(x))^T O^{-1} (y^o - y(x)) \]

where \(x^b \) is an initial estimate given by the model state vector, \(x \) is the model state for which the solution is desired, \(y^o \) is the vector of observations, \(y(x) \) is an operator which transforms the model state vector into the same parameters as the observations, and \(B \) and \(O \) are the background and observational error covariance matrices respectively. For our purposes, \(y(x) \) is the radiative transfer operator. Note that \(O \) is a combination of observational errors and radiative transfer errors. (This is just a least squares problem)
What’s it all about: part deux

How do we find the minimum? From first quarter Calculus: Take the first derivative and set it equal to zero.

$$\nabla J(x) = B^{-1}(x - x^b) - K(x)^T \ O^{-1}(y^o - y(x)) = 0$$

where $K(x)$ is the matrix of partial derivatives of $y(x)$ with respect to the elements of x. (factor of 2 divides out)
What’s it all about: part trois

It is evident that the solution requires both the forward radiative transfer operator $y(x)$, and the transpose of its derivative, $K(x)^T$. $K(x)^T$ is called the adjoint, or Jacobian.

$x = \{ T_1, T_2, T_3, \ldots, T_n, q_1, q_2, q_3, \ldots, q_n, \ldots \}$

$y(x) = \{ R_1, R_2, R_3, \ldots, R_m \}^T$
What’s it all about, part quatre

\[K(x)^T = \begin{bmatrix}
\frac{\partial R_1}{\partial T_1} & \frac{\partial R_2}{\partial T_1} & \frac{\partial R_3}{\partial T_1} & \cdots & \frac{\partial R_m}{\partial T_1} \\
\frac{\partial R_1}{\partial R_1} & \frac{\partial R_2}{\partial R_1} & \frac{\partial R_3}{\partial R_1} & \cdots & \frac{\partial R_m}{\partial R_1} \\
\frac{\partial T_2}{\partial R_1} & \frac{\partial T_2}{\partial R_2} & \frac{\partial T_2}{\partial R_3} & \cdots & \frac{\partial T_2}{\partial R_m} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\frac{\partial q_1}{\partial R_1} & \frac{\partial q_1}{\partial R_2} & \frac{\partial q_1}{\partial R_3} & \cdots & \frac{\partial q_1}{\partial R_m} \\
\frac{\partial q_2}{\partial R_1} & \frac{\partial q_2}{\partial R_2} & \frac{\partial q_2}{\partial R_3} & \cdots & \frac{\partial q_2}{\partial R_m} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\frac{\partial q_n}{\partial R_1} & \frac{\partial q_n}{\partial R_2} & \frac{\partial q_n}{\partial R_3} & \cdots & \frac{\partial q_n}{\partial R_m}
\end{bmatrix} \]
What’s it all about, part cinq

In olden days (say 1990), computation of $K(x)^T$ required $N+1$ forward model calculations using forward (or backward) finite differencing (centered required $2N+1$). Thus these techniques were only used in limited studies.

In these modern times, using adjoint coding techniques $K(x)^T$ can be computed with the effort of about 3 forward model calculations.
What are these all the models?

• The **tangent linear** model is derived from the forward model
 - gives the derivative of the radiance with respect to the state vector (vector output, m channels)

• The **adjoint** is derived from the tangent linear model
 - gives the transpose of the derivative of the radiance with respect to the state vector (vector output, N variables)

• The **Jacobian** is derived from the adjoint model
 - gives the transpose of the derivative of the radiance with respect to the state vector by channel (matrix output, Nxm)

• At NCEP, only the forward and the Jacobian models are actually used, but all models must be developed and maintained in order to assure a testing path, and to make sure the performance is correct.
Why can’t we just use the Tangent Linear Model?

- You can.
- However, it still takes N TL calculations.
- You avoid the finite differencing because the TL is the analytic derivative, but you just get a vector of radiances for each call. You still have to call it for each element of the input vector.
Testing

• Testing the code is rigorous and analytic
• Each code is tested for consistency with the model from which it was developed
• Code is tested bottom up, lowest level first.
• Full TL model is tested before moving to adjoint
• Full Adjoint is tested before moving to Jacobian
Adjoint Compiler

• Giering and others have written compilers that generate TL and adjoint code
• Some people at NCAR swear by them
• Others swear at them (just kidding)
• We feel that better optimization can be achieved by hand coding.
Summary

• Quick overview of OPTRAN

• Description of Adjoint and associated models

• Keep these brave souls who will take the coding class in your thoughts.
Class Participants Please Remain for a Few Minutes