NOAA ProbSevere v2 file format description

Definitions:

- NOAA the National Oceanic and Atmospheric Administration
- MRMS Multi-Radar Multi-Sensor
- NWP numerical weather prediction
- ENI Earth Networks Incorporated®
- CAPE convective available potential energy
- AGL above ground level
- 2D two-dimensional
- UTC coordinated universal time
- YYYYMMDD the UTC year, month, and date. E.g., 20190301
- HHMMSS the UTC hour, minutes, and seconds. E.g., 083156

Product description: NOAA ProbSevere v2 is a subsystem of MRMS integrating radar, satellite, lightning, and NWP data to provide short-term storm-based probabilistic guidance to forecasters. The four ProbSevere products in v2 are: ProbHail, ProbWind, ProbTor, and probability of any severe (ProbSevere).

Format: geoJSON (http://geojson.org/)

Filename convention: MRMS_PROBSEVERE_YYYYMMDD_HHMMSS.json

Frequency: 2 min (updates with MRMS 2D severe weather products)

Size: variable; f(number and spatial size of features); generally between 20 kB and 2 MB

File description:

- Metadata:
 - o "source": the production location and system
 - "product": ProbSevere
 - o "validTime": the MRMS UTC timestamp for this file
 - "productionTime": the UTC timetamp when this file was written (approximate)
 - o "machine": the Linux machine running the production code
 - "type": the type of data in this file a "FeatureCollection"

```
"features":[
{"type": "Feature",
"geometry": {
    "type": "Polygon",
    "coordinates":[[[-85.73,31.11],[-85.71,31.11],
    85.79,31.09],[-85.77,31.09],[-85.73,31.11]]]
}.
```

- **Features:** the remainder of each JSON is a list of "features", or storm objects. Each feature has several fields:
 - "type": this will always be "Feature"
 - "geometry"
 - The geometry of each feature has "type":"Polygon" and "coordinates". The "coordinates" is a double-nested listed of lon/lat pairs (longitudes < 0 are in the western hemisphere). Each lon/lat pair corresponds to a vertex point in the storm object. The first and last lon/lat pair will be identical (see above example).</p>

"models": {
"probsevere": {
"PROB":"61",
"LINE01":"ProbHail: 1%; ProbWind: 28%; ProbTor: 61%",
"LINE02":"- MESH: 0.12 in.",
"LINE03":"- VIL Density: 1.10 g/m^3",
"LINE04":"- ENI Flash Rate: 1 fl/min",
"LINE05":"- ENI Flash Density (max in last 30 min): 0.10 fl/m
"LINE06":"- Max LLAzShear: 0.014 /s",
"LINE07":"- 98% LLAzShear: 0.011 /s",
"LINE08":"- 98% MLAzShear: 0.003 /s",
"LINE09":"- Norm. vert. growth rate: 1702Z 1.9%/min (weak)",

o "models"

- This field contains four fields representing the four products of ProbSevere v2: "probsevere", "probhail", "probwind", and "probtor".
- Each of these models contains a "PROB" key, which is the probability value for this product. In the example above, "PROB":"61" means the storm has a probability of severe of 61% (because the it is under "probsevere").
- Each of these models also contain "LINE" keys. The values of the "LINE" keys represent the intended order to display information upon user scroll-over or hover over objects. For example, the value of "LINE01" should always be the first or top line of output. The value of "LINE02" follows "LINE01", and so on.

"properties": {
"MUCAPE":"1690",
"MLCAPE":"1429",
"MLCIN":"0",
"EBSHEAR":"48.3",
"SRH01KM":"154",
"MEANWIND_1-3kmAGL":"37.5",
"MESH":"0.22",
"VIL_DENSITY":"1.50",
"FLASH_RATE":"16",
"FLASH_DENSITY":"0.46",
"MAXLLAZ":"0.007",

- "properties"
 - These are key / value pairs for different attributes or predictors in ProbSevere. These are unimportant for display purposes. These properties may change as ProbSevere v2 evolves.
 - ID: the object ID number of this storm object. This will help link together storm objects through time.
 - MUCAPE: the most-unstable CAPE for this storm, in units of J/kg
 - MLCAPE: the mixed-layer CAPE (0-90mb) for this storm, in units of J/kg

- MLCIN: the mixed-layer convective inhibition for this storm, in units of J/kg
- EBSHEAR: the effective bulk shear for this storm, in units of kts
- SRH01KM: the 0-1km storm relative helicity for this storm, in units of J/kg
- MEANWIND_1-3kmAGL: the 0-1km AGL mean wind for this storm, in units of kts
- MESH: the MRMS maximum expected size of hail for this storm, in units of in
- VIL_DENSITY: the MRMS vertically integrated liquid density for this storm, in units of g/m³
- FLASH_RATE: the ENI flash rate for this storm, in units of flashes/min
- FLASH_DENSITY: the ENI flash density for this storm, in units of flashes/min/km²
- MAXLLAZ: the MRMS maximum 0-2km AGL azimuthal shear for this storm, in units of s⁻¹
- P98LLAZ: the MRMS 98th percentile value of 0-2km AGL azimuthal shear for this storm, in units of s⁻¹
- P98MLAZ: the MRMS 98th percentile value of 3-6km AGL azimuthal shear for this storm, in units of s⁻¹
- MAXRC_EMISS: the maximum rate of change in 11 µm top-oftroposphere emissivity (aka normalized satellite growth rate) for this storm, in units of %/min
- MAXRC_ICECF: the maximum rate of change in the ice cloud fraction (aka glaciation rate) for this storm, in units of min⁻¹
- WETBULB_OC_HGT: the height of the lowest wet-bulb 0°C level for this storm, in units of kft
- PWAT: the precipitable water for this storm, in units of in
- CAPE_M10M30: the CAPE between -10°C and -30°C levels for this storm, in units of J/kg
- LJA: the ENI lightning jump algorithm sigma value for this storm, in units of standard deviation
- SIZE: the number of pixels for this storm; each pixel is roughly equivalent to 1 km².
- AVG_BEAM_HGT: the average radar beam height for this storm from the nearest NEXRAD site, assuming standard atmospheric refraction
- MOTION_EAST: the eastward or westerly motion for this storm, in units of m/s (values < 0 mean westward/easterly motion)
- MOTION_SOUTH: the southward or norther motion for this storm, in units of m/s (values < 0 mean northward/southerly motion).