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ABSTRACT

Geostationary satellites [e.g., the Geostationary Operational Environmental Satellite (GOES)] provide

high temporal resolution of cloud development andmotion, which is essential to the study of manymesoscale

phenomena, including thunderstorms. Initial research on thunderstorm growth with geostationary imagery

focused on the mature stages of storm evolution, whereas more recent research on satellite-observed storm

growth has concentrated on convective initiation, often defined arbitrarily as the presence of a given radar

echo threshold. This paper seeks to link the temporal trends in robust GOES-derived cloud properties with

the future occurrence of severe-weather radar signatures during the development phase of thunderstorm

evolution, which includes convective initiation. Two classes of storms (severe and nonsevere) are identified

and tracked over time in satellite imagery, providing distributions of satellite growth rates for each class. The

relationship between the temporal trends in satellite-derived cloud properties and Next GenerationWeather

Radar (NEXRAD)-derived storm attributes is used to show that this satellite-based approach can potentially

be used to extend severe-weather-warning lead times (with respect to radar-derived signatures), without

a substantial increase in false alarms. In addition, the effect of varying temporal sampling is investigated on

several storms during a period of GOES super-rapid-scan operations (SRSOR). It is found that, from a sat-

ellite perspective, storms evolve significantly on time scales shorter than the current GOES operational scan

strategies.

1. Background

First launched in the late 1960s and 1970s, geosta-

tionary weather satellites [e.g., Applications Technol-

ogy Satellite (Suomi and Parent 1968), Synchronous

Meteorological Satellites (e.g., Legeckis 1975), and Geo-

stationary Operational Environmental Satellite (GOES;

Menzel and Purdom 1994)] provide frequent observations

of clouds and weather systems. Convective clouds are

a subset of clouds that develop on short time scales (from

minutes to hours), and frequent observation is necessary

to understand the physical processes related to convec-

tive clouds as well as to forecast the development/growth

of such clouds. Purdom (1993) provides an overview of

the role of satellite observations from convective clouds

(to be specific, tornadic thunderstorms), including at-

mospheric temperature and moisture retrievals prior

to initiation, forcing mechanisms during initiation, and

satellite-inferred severity of mature thunderstorms.

In more specific terms, Adler and Fenn (1979a,b),

Adler et al. (1985), and Reynolds (1980) were some of
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the first to quantitatively use temporal trends of GOES

infrared (IR) brightness temperature (BT) to deter-

mine the intensity of thunderstorms. These studies fo-

cused on distinguishing severe thunderstorms from

nonsevere thunderstorms. Adler and Fenn (1979a,b) used

all severe reports for verification, whereas Reynolds

(1980) used only reports of severe hail for verification

since, as he argued, severe hail is most directly related

to updraft intensity and is least dependent upon bound-

ary layer processes. These studies focused on the growth

rate of thunderstorms that already had glaciated cloud

tops (as the infrared BTs were below the homogeneous

freezing point) and continued to grow to the tropopause

(and, in some cases, the lower stratosphere). These case

studies concluded that satellite-based growth rates of

thunderstorms (as determined by decreasing BTs and the

presence of very low BTs) could successfully be used to

distinguish severe thunderstorms from nonsevere thun-

derstorms. These techniques required very low BTs and,

in some cases, BTs that are consistent with the main

storm updraft overshooting the tropopause, however.

Given the level of maturity of thunderstorms for these

techniques to be successful and given the high spatial

and temporal resolutions of the current network of

Next Generation Weather Radar (NEXRAD; Crum

and Alberty 1993) over the continental United States

(CONUS), these techniquesprovide limitedaddedvalueover

the CONUS (or anywhere else with good radar coverage).

Roberts and Rutledge (2003) more recently deter-

mined that the temporal trends of infrared BT from

GOES could provide lead times of up to 30min for

storm initiation (production of 35-dBZ radar reflec-

tivity). Building upon these studies, others have de-

veloped convective initiation/cloud-top-cooling methods

to diagnose/nowcast thunderstorm initiation and inten-

sification (Mueller et al. 2003; Mecikalski and Bedka

2006; Vila et al. 2008; Zinner et al. 2008; Sieglaff et al.

2011). Mecikalski et al. (2011) investigated the temporal

trends of retrieved microphysical properties of growing

convective clouds, relating them to physical properties

of storm evolution prior to convective initiation. The

focus of these studies was primarily on convective ini-

tiation and/or existing storm intensification and not on

distinguishing between severe and nonsevere thunder-

storms during the initial growth stages.

With the deployment of the CONUS-wide NEXRAD

network in the early 1990s, radar-based storm observation

and warning processes were revolutionized (Polger et al.

1994). Polger et al. (1994) showed that critical success in-

dex scores for severe-thunderstorm- and tornado-warning

issuance nearly doubled relative to the pre-NEXRADera.

The lead time of severe-thunderstorm/tornado warnings

averaged 14.9–17.3min aheadof ground-truth observations,

and tornado-warning lead time increased from 4.4min

prior to NEXRAD implementation to 8.8min after

NEXRAD implementation. Without question, NEXRAD

observations are the critical tool for issuing severe-

thunderstorm and tornado warnings.

The previously discussed satellite-based convective-

initiation research indicates that robust satellite growth

signatures exist prior to severe-weather signatures in

NEXRAD observations. The goals of this paper are to

examine whether the temporal evolution of satellite-

based growth metrics from developing convective clouds

can be used to distinguish severe from nonsevere thun-

derstorms and to demonstrate that these satellite-based

growth signatures often occur prior to the appearance

of robust severe-weather signatures in NEXRAD, lead-

ing to the possibility of increasing severe-thunderstorm-

warning lead times even further. This investigation

should provide a solid basis for the utility of satellite-

observed growth rates upon entering an era of improved

geostationary spatiotemporal resolution (;2 km in the

IR; ;5min over CONUS), beginning with the upcom-

ing launch of GOES-R (Schmit et al. 2005). The orga-

nization of the remaining sections in this paper is as

follows: section 2 contains data and methods, section 3

presents the analysis, and section 4 gives conclusions

and future work.

2. Data and methods

a. Satellite data and algorithms

GOES-12 and GOES-13 imager data are used in this

study 1) as input into a cloud-object identification and

tracking system and 2) as input into satellite algorithms

that compute a cloud mask (Heidinger 2010), cloud-top

phase (Pavolonis 2010a,b; Sieglaff et al. 2011), 11-mm

top-of-troposphere cloud emissivity (Pavolonis 2010a),

and cloud optical depth t/effective radius re (Walther

and Heidinger 2012). The output from these GOES

algorithms is combined with the cloud-object-tracking

output to calculate satellite-based convective-cloud-

property evolution metrics.

The 11-mm top-of-troposphere cloud emissivity «tot is

the 11-mm emissivity that a cloud would have if the ra-

diative center of the cloud were located at the lower

bound of the tropopause. For clouds with a large in-

frared optical depth, like the cumulus clouds analyzed

in this study, «tot is a measure of how close the cloud

radiative center is to the tropopause. A value of 1.0 is

indicative of a cloud that is opaque in the IR and has

an effective temperature consistent with the start of the

tropopause. In general, «tot is only greater than 0.0 if

a cloud is actually present. See Pavolonis (2010a) for

a complete physical description of «tot. In spatial terms,
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«tot maintains the gradients observed in the 11-mm BT

field (see Figs. 1a,b). Unlike BT, however, the «tot field is

less sensitive to the thermodynamic state of the back-

ground, cloud-free, atmosphere. For example, a mature

convective cloud nearing the tropopause will always

have «tot values approaching 1.0, whereas the BT of such

a cloud can vary on the order of tens of degrees Celsius

both latitudinally and by season. In addition, «tot was de-

termined to be more skillful in quantifying the vertical

cloud growth of convective clouds than is IR BT (not

shown) and therefore was chosen over the IR BT; «tot is

also used for quantifying the horizontal expansion of

developing convective clouds.

In addition, «tot is used as input into the cloud-object

tracking system (described briefly later in the text).

There are two advantages of using «tot over the IR BT

within the cloud-object tracking system: 1) the fact that

it is generally only valid (.0.0) for cloudy pixels and,

as a result, clear-sky pixels are automatically excluded

from cloud objects and 2) the aforementioned limited

sensitivity to the background (cloud free) thermody-

namic state of the atmosphere.

The GOES cloud-top-phase algorithm uses multi-

spectral GOES observations as well as output from a

multispectral GOES cloud mask (Heidinger et al. 2010)

to determine the phase of cloudy GOES pixels. The

FIG. 1. A cold front over the central plains from 2215 UTC 13 May 2009, showing four satellite-derived fields used in the analysis: (a)

11-mm BT, (b) top-of-troposphere emissivity, (c) cloud phase, and (d) cloud optical depth.
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cloud-phase classifications include warm liquid water,

supercooled liquid water, mixed phase, and ice (see ex-

ample in Fig. 1c). The GOES cloud-top-phase output is

used for determining the rate at which a developing

convective cloud glaciates in the uppermost part of the

cloud.

TheGOES t and re are computed only during daylight

hours because the algorithm relies on measurements

of reflected sunlight at visible and near-infrared wave-

lengths (see example in Fig. 1d). The algorithm utilizes a

bispectral approach (0.64–3.9-mm channel pair on GOES)

within an optimal estimation framework (Walther and

Heidinger 2012). The GOES t product, which is a mea-

sure of the vertically integrated extinction at 0.65mm, is

used to help quantify the horizontal expansion of de-

veloping convective clouds. The re product (Hansen and

Travis 1974) provides a measure of the size of the hy-

drometeors that are contributing most significantly to the

measured 3.9-mm radiation. As such, it may be a useful

proxy for updraft strength prior to cloud-top glaciation,

as stronger updrafts may have a weaker rate of change in

re because of the shorter time available for cloud droplets

to grow by coalescence, as supported by Rosenfeld et al.

(2008). In this paper, re is used only for liquid water re-

trievals, as identified by the cloud-top-phase algorithm.

b. Cloud-object identification and tracking

A cloud-object identification and tracking system

developed by Sieglaff et al. (2013, hereinafter S13) is

employed in this study to create cloud objects for au-

tomated computation of temporal trends of convective-

cloud growthmetrics. The full details of the cloud-object

tracking system are outside the scope of this text. The

main points are described below, and the reader is en-

couraged to consult S13 for complete details. The S13

framework uses «tot as input to create cloud objects. A

cloud object is simply a collection of adjacent pixels

around a local maximum (of «tot in this case) grouped

into a single entity on the basis of the rules of the S13

framework. Each cloud object is assigned a unique

identifier and is tracked through space and time in sub-

sequent GOES observations while maintaining the unique

identifier. The S13 framework allows for the history of

a variety of parameters to be maintained through a cloud

object’s lifetime, from infancy (as few as three GOES IR

pixels) into the mature phase (hundreds of GOES IR

pixels).

To be specific, the cloud objects are used to determine

the time rate of change of the maximum «tot (vertical

growth), ice cloud fraction (glaciation rate), area of «tot$

0.8 (horizontal growth), area of cloud t $ 40 (horizontal

growth), and mean cloud effective particle radius (up-

draft vigor) for each cloud object. The temporal trends

are computed for two classes: a severe-thunderstorm

dataset and a nonsevere-thunderstorm dataset. The

severe-thunderstorm dataset includes 120 cloud ob-

jects, which were manually identified storms with

observable growth rates (not obscured by large cloud

shields) from 21 days between 2008 and 2012 (see Fig. 2a

for their spatiotemporal distribution). The requirement

for being classified as a severe thunderstorm was a sur-

face hail or tornado report from the National Oceanic

and Atmospheric Administration (NOAA)/National

Climatic Data Center Storm Data publication (2008–12).

The surface-hail/tornado criteria were chosen because of

the ambiguity of wind-damage reports in the Storm Pre-

diction Center storm-data record (Trapp et al. 2006).

Reynolds (1980) also presents the use of severe hail

reports as a means to classify severe thunderstorms. The

nonsevere dataset (containing 864 objects) is composed

of nonsevere convective clouds for a variety of geo-

graphical and seasonal locations over the CONUS that

exhibited convective activity but that did not have any

severe-weather reports. Figure 2b shows the spatiotem-

poral distribution of the latitude–longitude constrained

boxes where the nonsevere storms were contained. The

value in the upper-right corner of each box represents

the number of storms added to the nonsevere dataset

for each location. Cloud objects in these regions were

added to the nonsevere class if they demonstrated some

vertical growth (rate of change in maximum «tot. 0) and

achieved at least 35 dBZ at 2108C at some point in

their lifetime. The latter criterion was selected on the

basis of recent research about convective initiation

(Kain et al. 2013).

3. Analysis

a. Analysis of satellite-based growth metrics

For the severe and nonsevere distributions of each

metric, the rate of change at each image time for an

object is computed by simple subtraction using the

previous image time and is then normalized by minutes

elapsed. For the three vertical-growth-related predictors

(maximum «tot, ice cloud fraction, and mean re), the

maximum rate of change (between successive image

times) in a given object ‘‘lifetime’’ is determined for all

objects in the severe and nonsevere datasets. For the

horizontal-growth predictors (object area encompassed

by certain t and «tot contours), the rate of change be-

tween each successive image pair is determined for all

objects in each (severe and nonsevere) sample dataset.

By collecting temporal trends in this manner, we aim to

capture the largest vertical growth between successive

images and the continued horizontal growth that occurs

after the observable vertical growth has ceased. For each
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metric and class (severe and nonsevere), probability

density functions were constructed and then smoothed

using kernel density estimation (Wilks 2006) with stan-

dard normal kernels and variable bandwidths to approx-

imate the true population probability density functions.

Bandwidth selection was heuristic, attempting to pre-

serve the underlying true distribution while eliminating

variability produced by sparsely populated bins. The

bandwidths are different for each predictor; they are

identical for both the severe and nonsevere distribu-

tions of the given predictor, however. Table 1 gives

bandwidth values, sample sizes, and the time at which

the predictor is valid (which contributes to sample-

size differences).

To test whether the means of the severe and non-

severe distributions of derived parameters are statisti-

cally different, a right-tailed (left tailed for re rate of

change) Student’s t test is performed (since the data

samples are adequately large), with the null hypothesis

being that the mean of the severe-storm distribution

is not greater than the mean of the corresponding

nonsevere-storm distribution for a given metric. Boot-

strapping is also performed, in which each sample distri-

bution is randomly resampled with replacement 5000

FIG. 2. (a) Each times sign marks the source point of a storm in the severe class, and the color

shows the month in which the storm occurred. (b) Each box depicts the domain from where

nonsevere storms were drawn, and the color shows the month in which the storms occurred.

The values at the top right of each box are nonsevere-storm counts.
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times to create confidence intervals of the mean and

standard deviation of the distributions, approximating

these population statistics empirically. Each of the new

samples has the same size as the original sample (Wilks

2006). Table 1 summarizes the significance p values of

the t tests, as well as the 95% confidence intervals for the

means and standard deviations for the severe and non-

severe distributions for each predictor, computed em-

pirically from the bootstrapped samples. The ensuing

analysis demonstrates the degree of discrimination be-

tween the severe and nonsevere classes, irrespective of

when a given rate of change occurred. The lead-time

analysis in section 3b helps to determine when in the

course of storm evolution these rates of change occur,

measured with respect to weather-radar variables.

1) MAXIMUM «TOT

The rate of change in maximum «tot, denoted D«tot,
signals vertical growth in a cloud object. The hypothesis

is that strong, more-persistent updrafts are more likely

to create storms capable of severe hazards and should

reach the upper troposphere/lower stratosphere sooner

than weak updrafts do. Figure 3a shows the distribu-

tions of the lifetime maximum D«tot for the nonsevere

and severe storms. The severe distribution demonstrates

higher relative frequencies from about 0.012min21 on-

ward. Even at large rates of change, there is an order-

of-magnitude difference between severe and nonsevere

storms, although it is not explicitly visible. The mean

D«tot of the severe storms is statistically greater than

the mean D«tot of the nonsevere storms [significance

p value 5 O(10244)], signifying that the null hypothesis

can most certainly be rejected. Given the difference in

the shapes of the sample distributions and their large

sample sizes, this result should not be surprising.

2) GLACIATION

The rate of glaciation is the rate of change in the

fraction of the cloud object with a cloud-top phase of

ice, denoted Dice. Our hypothesis is that faster vertical

motion will cause a cloud top to convert from mostly

water to mostly ice quicker than weaker vertical motion

will. Figure 3b shows the sample distributions for Dice
(min21) for severe and nonsevere storms. Objects that

were initially mostly glaciated at the cloud top (ice cloud

fraction greater than 0.5) were not included in these

samples so as to capture only the conversion from mostly

liquid water to mostly ice. Again, the maximum Dice
for each object in the datasets is added to the distribu-

tions. The severe distribution is more heavily populated

at higher values than is the nonsevere distribution, at

Dice greater than approximately 0.03min21. The t test

again demonstrates that the mean growth for the se-

vere distribution is statistically greater than that for the

nonsevere distribution (see Table 1).

3) AREA OF t $ 40

The rate of change in area of a cloud object measures

the horizontal expansion of a storm once it loses posi-

tive buoyancy (at the cloud top) and cannot grow ver-

tically any longer. The areal expansion of the storm is

also a function of the depth of the storm’s outflow,

which is assumed to be primarily near the tropopause

in this study. Faster-growing anvil clouds are again

indicative of stronger, sustained updrafts and poten-

tially severe-weather hazards. Mainly isolated storms

TABLE 1. Summary of statistical information for the satellite predictors, including bootstrapping results of 95% confidence intervals for

sample mean and standard deviation for severe and nonsevere thunderstorms, as well as the t-test p value (comparing sample means) for

each satellite growth predictor.

Predictor (unit) Valid time

95% confidence interval:

Mean

95% Confidence interval:

Std dev Bandwidth

Sample

size

t-test

p value

D«tot (min21)

Severe storms Night and day 0.019 068–0.022 168 0.008 510–0.011 878 0.005 120 O(10244)

Nonsevere storms Night and day 0.007 763–0.008 714 0.007 884–0.009 065 0.005 864 O(10244)

Dice (min21)

Severe storms Night and day 0.0543–0.0657 0.0302–0.0382 0.018 97 O(10228)

Nonsevere storms Night and day 0.0210–0.0248 0.0266–0.0298 0.018 577 O(10228)

D«tot_area (km
2min21)

Severe storms Night and day 47.8789–54.4834 37.7850–48.1438 11 485 O(102134)

Nonsevere storms Night and day 8.8487–11.2709 25.2904–36.3265 11 1911 O(102134)

Dtarea (km
2min21)

Severe storms Day only 22.8107–25.7401 31.9899–34.4272 8 1392 O(10293)

Nonsevere storms Day only 1.2343–1.6787 10.1006–10.6182 8 5861 O(10293)

Dre (mmmin21)

Severe storms Day only 0.1197–0.1942 0.1473–0.2403 0.25 76 0.0132

Nonsevere storms Day only 0.0989–0.1241 0.1366–0.1823 0.25 446 0.0132
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were used, to avoid artificially large areal expansions as

a result of multicell storms, which is a shortcoming of

this predictor. The t field identifies thicker cumuliform

clouds in the midst of thin cirrus clouds but is only

reliable when the solar zenith angle is less than 708.
Thus, only objects with a maximum solar zenith angle

of less than 708 are included for this metric. Larger

values of t are representative of deeper cumulus

FIG. 3. Distributions of satellite growth rates for severe (red lines)

and nonsevere (blue lines) thunderstorms, smoothed with kernel

density estimation: (a) D«tot, (b) Dice, (c) Dtarea, (d) D«tot_area, and
(e) Dre.
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convection; the product noise is greater for larger t

(i.e., the signal is not as consistent from storm to storm),

however. For example, one severe storm may exhibit

many pixels of a high t such as 100, and another severe

storm may only have a few pixels of high t. The

threshold of t $ 40 balances classification of cumuliform

and cirrus, to noise tolerance. Furthermore, this threshold

is similar to values of t that were found in recent re-

search to be characteristic of deep convective clouds

(Young et al. 2012).

Figure 3c shows the severe and nonsevere sample

distributions for the rate of change of area of t $ 40

(denoted Dtarea; km
2min21). Recall that the distribu-

tions contain every area rate of change for an object,

since we are concerned with sustained growth of a storm

and not a single instance of strong horizontal growth

(e.g., the storm’s maximum growth rate). The severe

distribution clearly has more weight at larger rates of

change (.10 km2min21) than does the nonsevere dis-

tribution. This result suggests that nonsevere storms

do not grow horizontally as quickly, or that their hori-

zontal growth is not sustained. Again, the mean of the

severe class is statistically greater than that of the non-

severe class (Table 1). The separation of these two dis-

tributions suggests that this metric may be skillful at

discriminating between severe and nonsevere convec-

tion, especially for large rates of horizontal growth.

4) AREA OF «TOT $ 0.8

Since the t field is limited to when the maximum solar

zenith angle is less than 708, it is also beneficial to look

at a diurnally invariant predictor to diagnose the hori-

zontal growth/decay of storms. The 0.8 contour of «tot
was chosen since we are interested in areal expansion

at or near the tropopause. As described earlier, a value

of 1.0 is indicative of an opaque cloud with a top at the

bottom of the tropopause. A value of 0.8 ensures that

anvil regions that are partially transparent to 11-mm ra-

diation are included, as well as storms nearing the tro-

popause. The «tot contours between 0.75 and 0.85 yield

similar results.

Similar to Dtarea, the rate of change in area of «tot $

0.8, denoted D«tot_area, demonstrates that severe storms

exhibit stronger horizontal growth than do nonsevere

storms (Fig. 3d). We see that the conditional probability

for the severe storms exceeds its counterpart at about

20 km2min21. The severe distribution is clearly much

broader than the nonsevere distribution, and the two

indeed come from different populations, as the mean

D«tot_area of the severe storms is statistically greater than

that of the nonsevere storms (Table 1). This is consistent

with a result of Soden (2004), who found that stronger

convective events are associated with larger cirrus anvil

shields. Thus, D«tot_area may be a good alternative to

Dtarea for diagnosing severe-storm areal expansion when

the solar zenith angle is too large or for enhancing the

confidence that the storm is or will become severe.

5) MEAN EFFECTIVE RADIUS

The re, like t, is only available when the solar zenith

angle is less than 708. The re property is derived close

to cloud top, similar to the cloud phase. It is presumed

that during the vertical growth stage of a thunderstorm

the re in liquid water will increase, as collisions and co-

alescence occur more often as the larger hydrometeors

are forced upward. For strong updrafts, however, the

rate of increase in re may not be as large as the rate of

increase for weak updrafts, as cloud droplets in weak up-

drafts have more time to grow by coalescence (Rosenfeld

et al. 2008). Once the cloud begins to definitively glaciate

in the uppermost part of the cloud, the interpretation of

re is likely to change (e.g., Lindsey and Grasso 2008).

Thus, in this analysis, re is only used if the cloud-top

phase indicated liquid water. The maximum rate of

change of the mean liquid water effective radius Dre for
each storm was added to the final distributions. Figure 3e

shows the sample distributions of Dre (mm min21) for se-

vere and nonsevere storms. While still statistically signifi-

cant, the practical significance of Dre in discerning updraft

strength among severe and nonsevere thunderstorms is

much smaller than the other predictors, as there is little

apparent separation in the distributions of the two

classes (Fig. 3e).

b. Lead-time analysis ahead of NEXRAD severe
signatures

Several of these satellite predictors exhibit excellent

discrimination between severe and nonsevere thunder-

storms. While this is promising, it is also important to

demonstrate the potential lead time that trends in sat-

ellite metrics of growing convection have, prior to sig-

nificant NEXRAD features, as radar is by far the most

widely used tool in forecasting severe-storm develop-

ment. The University of Oklahoma/National Severe

Storms Laboratory in Norman, Oklahoma, has provided

merged, quality-controlled, CONUS-wide radar products

(Lakshmanan et al. 2006, 2007a,b) to evaluate the lead-

time potential of the satellite predictors.

The evaluation period contained a combined 29 days

from January and March–October, spanning 2008–11.

Of these days, 20 contained some storms from the severe

or nonsevere classes. All storms that reached designated

radar thresholds were evaluated on these days, however.

As no single radar variable or threshold is exclusively

indicative of severe weather, lead times to multiple

thresholds of three radar variables are investigated:
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1) maximum reflectivity at 2108C (REF10), 2) maxi-

mum vertically integrated liquid (VIL), and 3) maxi-

mum expected size of hail (MESH). All three maxima

are instantaneous (not lifetime maxima). These three

variables were chosen since each one captures the ver-

tical extent and intensity of storms to some degree.

Radar thresholds are preferable to storm reports for two

reasons: 1) storm reports in the United States have a

myriad of artifacts and biases (Doswell et al. 2005; Witt

et al. 1998b; Kelly et al. 1985; Morgan and Summers

1982) and 2) we are attempting to approximate the

amount of lead time relative to warning issuance (and

not reported time) while making an effort to remove

potential warning biases that different National Weather

Service offices may exhibit (e.g., Polger et al. 1994).

The five satellite predictors of interest in this paper

are D«tot, Dre, Dice, Dtarea, and D«tot_area. For brevity,

only D«tot and D«tot_area are shown, because they have

the lowest p values for the vertical and horizontal

growth predictors, respectively. For clarity, lead times

to the radar values are only shown for given rates of

change that exceed a certain threshold, consistent with

a storm that is ‘‘severe.’’ ForD«tot, 0.02min21 is used; for

D«tot_area, 40 km
2min21 is used. The first rate of change

(between successive images) to exceed the threshold for

each predictor is used to measure lead time for each

storm. See Figs. 3a and 3d for a reference on where these

thresholds lie in the severe- versus nonsevere-storm dis-

tributions. The decreasing cumulative distribution func-

tions (CDFs) of lead times are shown for each radar

threshold for each predictor in Fig. 4.

1) REFLECTIVITY AT 2108C

The storm’s REF10 is grouped in increments of

5 dBZ, from 30 to 65 dBZ. Over the 29 days, 7759 in-

dependent storms (cloud objects) achieved REF10 $

30 dBZ. In Fig. 4a, the CDFs of lead times are displayed

for different REF10 thresholds, for D«tot $ 0.02min21.

The shaded box to the right of the lead-time threshold

and above the REF10 threshold shows the percentage

of storms that exceed that lead-time value, for the given

radar threshold. For instance, approximately 65% of

storms have lead times greater than 15min prior to the

first occurrence of REF10 $ 55 dBZ. The CDFs show

that a significant proportion of storms with positive

lead times occur at 45 # REF10 , 55 dBZ and that

substantial lead times are evident at REF10$ 55 dBZ.

This vertical predictor demonstrates beneficial lead

time to moderate to strong REF10. Figure 4b demon-

strates lead-time CDFs for D«tot_area $ 40 km2min21.

The majority of storms have negative lead times,

prior to REF10 5 55 dBZ. Above that threshold, 35%

of the storms have more than 5min of lead time. At

REF10 $ 60 dBZ, 45% of storms have lead times

greater than 15min. This result demonstrates that large

D«tot_area offers little lead time on REF10 except at large

values. This is not surprising, as anvil expansion generally

lags rapid updraft growth, which is consistent with results

from early research on satellite-observed storms (Adler

and Fenn 1979a,b).

2) VERTICALLY INTEGRATED LIQUID

VIL measures the column-integrated liquid water

content in storms (Greene and Clark 1972) and has been

used for severe-weather forecasting, as enhanced re-

flectivity returns from hailstones often contaminate the

liquid water signal. VIL was binned in increments of

5 kgm22, from 15 to 60 kgm22. During the 29 days, 2523

storms achieved VIL $ 15 kgm22. Figure 4c displays

the CDFs of lead time to different thresholds of VIL, for

D«tot $ 0.02min21. Fifty percent of storms have a lead

time of 15min or greater prior to VIL $ 20 kgm22, for

this rate-of-change threshold. For the storms reaching

VIL$ 35 kgm22, 65%have over 35min of lead time; for

storms achieving VIL$ 50 kgm22, 95% have lead times

of greater than 15min. The D«tot clearly demonstrates

useful lead time, even at low to moderate VIL values.

For D«tot_area $ 40 km2min21, the CDFs of lead time

still exhibit large numbers of storms with positive lead

time (Fig. 4d), albeit atmoderate to strongerVIL values.

Approximately 20% of storms reaching VIL $ 25kgm22

have lead times of greater than 15min, and 35% of

storms reaching VIL $ 40 kgm22 have lead times of

greater than 15min. For VIL$ 50 kgm22, almost 60%

of storms have lead times that exceed 15min.

3) MAXIMUM EXPECTED SIZE OF HAIL

MESH is empirically derived from the severe hail

index (Witt et al. 1998a), which is a reflectivity-weighted

vertical integration from the 08C isotherm to the top of

the storm, neglecting reflectivity values below 40 dBZ

and attempting to capture the integrated ice content

of the storm. MESH does not have a one-to-one cor-

respondence with hail size (Wilson et al. 2009), but

Cintineo et al. (2012) showed that it is a good discrimi-

nator for the severe-sized hail threshold [1-in. (25.4mm)

diameter]. Stronger MESH certainly indicates strong

reflectivity high into the atmosphere. MESH was bin-

ned by 0.25 in., from 0.25 to 2.0 in. The 29 days in this

lead-time analysis yielded 1534 storms with MESH $

0.25 in. Figure 4e shows the lead-time CDFs for D«tot$
0.02min21. Nearly 75% of storms have lead times that

exceed 15min, prior toMESH$ 0.5 in. Prior to MESH

$ 1.0 in., the proportion increases to 85% with 15min

or greater of lead time. The CDFs of lead time for

D«tot_area $ 40 km2min21 demonstrate useful lead times
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(Fig. 4f), although they are not as impressive as those

for D«tot. There are still 25% of storms with 15min or

more of lead time before 0.5-in. MESH is reached and

45% of storms with 15min or more of lead time prior to

1.0 in. of MESH. Prior to very strong MESH ($2.0 in.),

approximately 75% of storms exhibit at least 15min of

lead time.

The D«tot_area has good lead time for severe-level VIL

and MESH, and D«tot has excellent lead time for VIL,

MESH, and moderate REF10. Even though D«tot_area
and D«tot do not have substantial lead time for every

storm, it is promising that large percentages of storms

have modest to excellent lead times prior to severe radar

signatures. It is clear, however, that satellite metrics that

capture vertical growth should generally be more valu-

able for predicting which immature cumuliform clouds

are most likely to produce severe weather later in their

life cycles.

c. The effect of temporal sampling on the observed
growth rates of storms

Numerous studies have estimated the vertical mo-

tion of continental and tropical deep convection using

ground-based or airborne Doppler radar (e.g., Heymsfield

and Schotz 1985; Heymsfield et al. 2010; Cecil et al.

2010). In an operational setting, convective cloud growth

FIG. 4. Decreasing CDFs of lead time prior to radar-derived thresholds. Each row represents an independent CDF. Shown are D«tot $
0.02min21 for (a) REF10, (c) VIL, and (e) MESH thresholds and D«tot_area $ 40 km2min21 for (b) REF10, (d) VIL, and (f) MESH

thresholds. See Figs. 3a and 3d for a reference of these satellite metric thresholds.
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can be inferred from high-temporal-resolution geosta-

tionary imagery. An opportunity presented itself when

GOES-14was used, at times, inAugust and September of

2012 to conduct super-rapid-scan operations (SRSOR) for

simulations of the next generation of GOES (GOES-R).

Scenes of opportunity were identified each day, in which

the satellite would scan a selected domain at 1-min fre-

quency (with a 4-min scan gap every 30min). This very

high temporal resolution of growing thunderstorms pro-

vided an excellent occasion to see how varying temporal

sampling of storms affected their observed growth

rates. Storms that formed over Missouri and Arkansas

on 16 August 2012 were investigated. These data were

acquired from the University of Wisconsin Space Sci-

ence and Engineering Center’s data center.

On this day, a strong short-wave trough was forecast

to move into the upper Great Lakes, with ample in-

stability (;2000–3000 J kg21 of surface-based CAPE)

ahead of a trailing surface cold front, creating an ele-

vated hail and high-wind threat from southernMichigan

to northeastern Oklahoma and northern Arkansas. Iso-

lated storms began forming on and ahead of the front

around 1700 UTC while the GOES-14 SRSOR was in

progress. Three storms are shown in this paper (Fig. 5):

two from Arkansas and one from Missouri. Each storm

had at least one severe-hail or severe-wind report asso-

ciated with it. The maximum «tot and area of «tot $ 0.8

are shown as functions of time after initial identification

t0 in Fig. 6. The gray dotted lines in each panel of Fig. 6

denote the endpoints of the 15-min interval of the fastest

vertical (Figs. 6a,c,e) or horizontal (Figs. 6b,d,f) growth

for each of the three storms. The 11-mm BT at the be-

ginning and end of the interval of fastest vertical growth

is also shown (Figs. 6a,c,e). The 1-min data yielded max-

imum D«tot from 0.06 to 0.1min21. The Global Forecast

System–estimated tropopause heights ranged from 14000

to 14 200m in the region during the rates of maximum

vertical growth. The D«tot of these magnitudes in this

range of tropopause heights yields maximum vertical

velocities ;19–24m s21 (average over 1min), which is

similar to instantaneous maximum vertical velocities

of deep convection found in recent observational studies

(Heymsfield et al. 2010; Cecil et al. 2010). The 15-min-

interval endpoints of each growth metric were used to

create CDFs of the vertical and horizontal growth for

each storm over that time period (Fig. 7) to compare

with the 1-min-resolution time series over that time.

The 15-min period of fastest growth illustrates a ‘‘best-

case scenario’’ that current GOES routine operation

scan mode would be able to capture (i.e., it is not de-

pendent on where in the interval the scan would begin).

For the vertical growth of storm 1 (Fig. 7a), 33% of its

growth occurred in the first 8min of the interval and the

next 51% of its growth during this period occurred in

the next 4min (26.7% of the 15-min period). For the

vertical growth of storm 3 (Fig. 7e), nearly 70% of the

growth occurred in the first 6min of the interval, in

40% of the 15min. Storm 2 (Fig. 7c) grew vertically by

13% in the first minute (in 6.7% of the 15-min period),

and the remainder of its vertical growth was mostly

linear. This demonstrates that much of the vertical growth,

especially the maximum growth rate in these storms, is

not adequately resolved by 15-min temporal resolution.

Five-minute temporal resolution would be needed to

reasonably resolve vertical growth rates such as those

exhibited by storms 1 and 3.

For the horizontal growth rates of these storms (Figs.

7b,d,e), most of the growth is fairly linear over the 15-min

time intervals. Small spurts of growth do occur, but 10- or

15-min temporal resolution may be acceptable to cap-

ture the horizontal growth rates. Even so, the promise of

consistent 5-min scans fromGOES-R (Schmit et al. 2005)

should help to alleviate the underresolution of vertical

growth rates (which may hinder storm discrimination)

FIG. 5. The 11-mmBT from 1800 UTC 16Aug 2012 over southern

Missouri and Arkansas. The yellow numbers depict storms that are

used for the time-series comparison (see Fig. 6, below). An anima-

tion of the storms’ evolution from the visible channel and other

SRSOR scenes is available online (http://cimss.ssec.wisc.edu/goes/

srsor/GOES-14_SRSOR.html).
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and to sharpen the accuracy of horizontal growth rates of

thunderstorms.

4. Conclusions and future work

Robust satellite-derived cloud products were used to

investigate growth rates of convective clouds prior to

their maturation. Research on the trends of storms from

geostationary imagery is not new; the approach used

in this paper is unique, however. Excellent discernment

between severe and nonsevere thunderstorms was dem-

onstrated in several growth metrics. Two vertical growth

metrics (D«tot and Dice) and two horizontal growth met-

rics (D«tot_area and Dtarea) were shown to have very good

FIG. 6. Time series of (a),(c),(e) maximum «tot and (b),(d),(f) area of «tot $ 0.8 as a function of minutes elapsed

after initial time for (top to bottom) three severe thunderstorms on 16 Aug 2012. The storms grew during a period of

1-min GOES-14 scans. The gray dotted lines represent the endpoints of the 15-min interval of fastest growth (ver-

tically or horizontally). The annotations in (a),(c),(e) are the 11-mm BTs at the beginning and end of the intervals

demarked by the dotted lines.
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classification value. Furthermore, D«tot and D«tot_area
demonstrated good lead time for a large proportion of

storms for several radar predictors. All satellite-based

predictors had appreciable lead time for low and mod-

erate MESH and VIL values, whereas only the vertical

predictor D«tot exhibited lead time on moderate REF10.

The vertical predictors demonstrate more lead time than

do the horizontal predictors for all radar thresholds.

These results are consistent withAdler and Fenn (1979a),

who related areal expansion of an isotherm and cloud-

top cooling to the magnitude of updraft velocity and to

severe-weather reports on the ground. Radar thresh-

olds were selected to measure lead time in the study

presented here, however. This research also demon-

strated that satellite-observable storm properties evolve

on small time scales (,5min) and that current geosta-

tionary scan strategies are insufficient to completely

capture the vertical and perhaps horizontal growth

FIG. 7. CDFs of (a),(c),(e) maximum «tot and (b),(d),(f) area of «tot$ 0.8 over the 15-min interval of fastest growth

for each storm (depicted in Figs. 6a–f), as a function of elapsed minutes after initial time of the interval t0,interval. The

y axis is normalized by the 15-min period of growth.
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rates of deep convection. Adler and Fenn (1979a) also

suggested that short-interval (;5min) scans are neces-

sary to adequately sample storm growth rates. The max-

imum vertical velocities of strong thunderstorms derived

from 1-min GOES imagery are comparable to the find-

ings of recent observational studies of continental deep

convection.

With excellent statistical and practical separation

among the distributions of several GOES-derived growth

metrics between severe and nonsevere thunderstorms,

there is potential to better classify the future severity

of developing convection and perhaps add lead time to

radar-indicated warnings. A statistical model is cur-

rently being trained and evaluated with a combination

of the satellite metrics discussed in this paper, numer-

ical weather prediction output of storm environment,

and radar metrics to predict the probability that a grow-

ing, unobscured convective cloud will produce severe

weather at a later time. This fused method attempts to

maximize the utility afforded by multiple sensors and

platforms with high temporal and spatial resolutions on

current observing systems. This and similar approaches

hold promise not only in the present day but in the

future as well, when sensors with improved coverage,

resolution, and capabilities will have been deployed

and integrated into the forecast process.
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