Super-Resolution of GOES-16 ABI Bands with a Convolutional Neural Network

Chuck White, Imme Ebert-Uphoff John Haynes, Yoo-Jeong Noh	' ABI Band-13 Native Resolution (2-km)	(10.3 µm) Super-Resolved (0.5-km)
Cooperative Institute for Research in the Atmosphere (CIRA)		
NOAA CoRP Symposium July 27 th , 2023 Madison, WI		
Cooperative Institute for Besearch in the Atmosphere		

Super-resolution

- General term for increasing the resolution of an image or imaging system
- Most of the recent approaches use neural networks
- Not a new problem, and many non-AI based methods exist (Lukosz 1966)

Martin Krasser; https://github.com/krasserm

W. Lukosz, "Optical Systems with Resolving Powers Exceeding the Classical Limit*," J. Opt. Soc. Am. 56, 1463-1471 (1966)

Pan-sharpening

- Using high-spatial-resolution • panchromatic bands to "increase" the spatial resolution of other bands
- Panchromatic band typically • has a wide spectral response function that overlaps lower resolution bands
- Could be considered a ٠ special case of superresolution

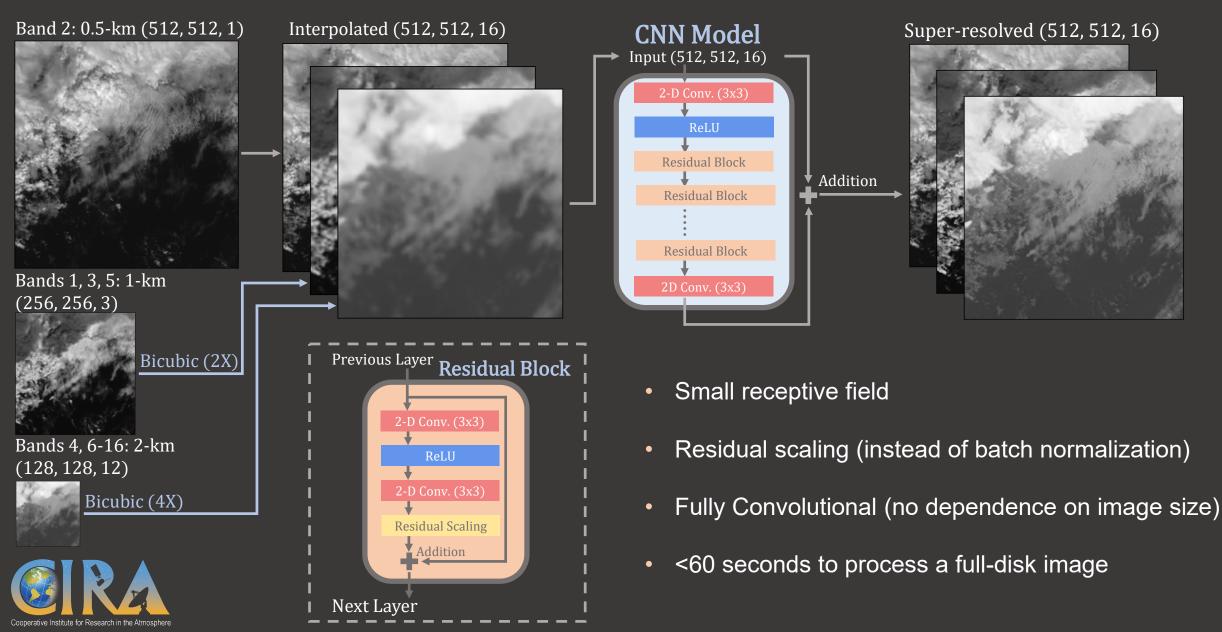
LR Multispectral

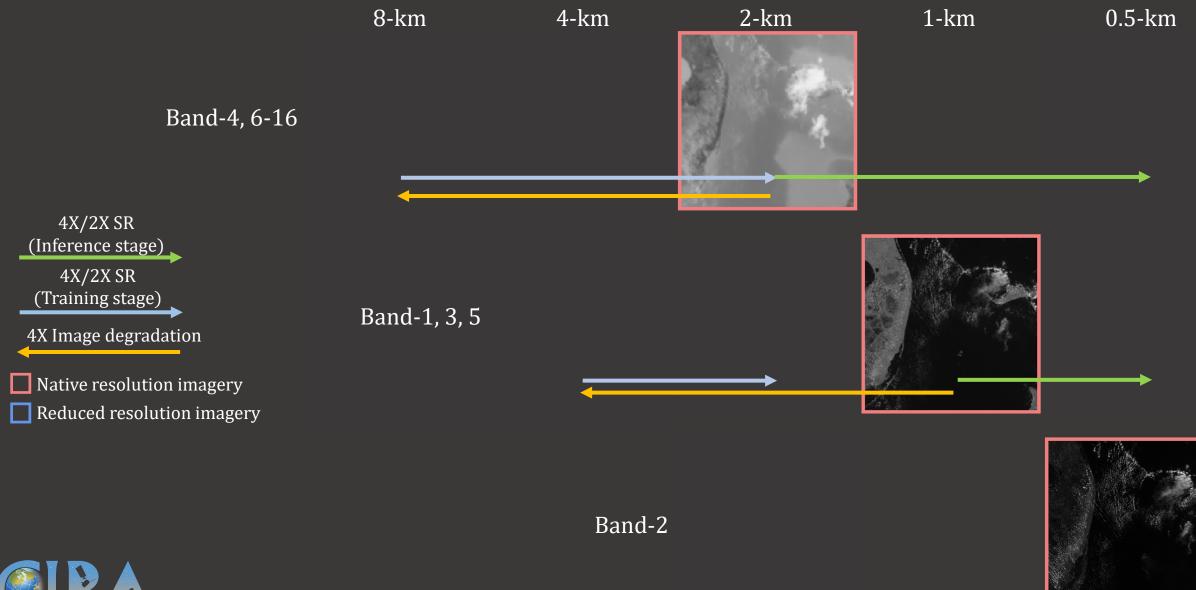
Multispectral

HR Panchromatic

Pansharpened

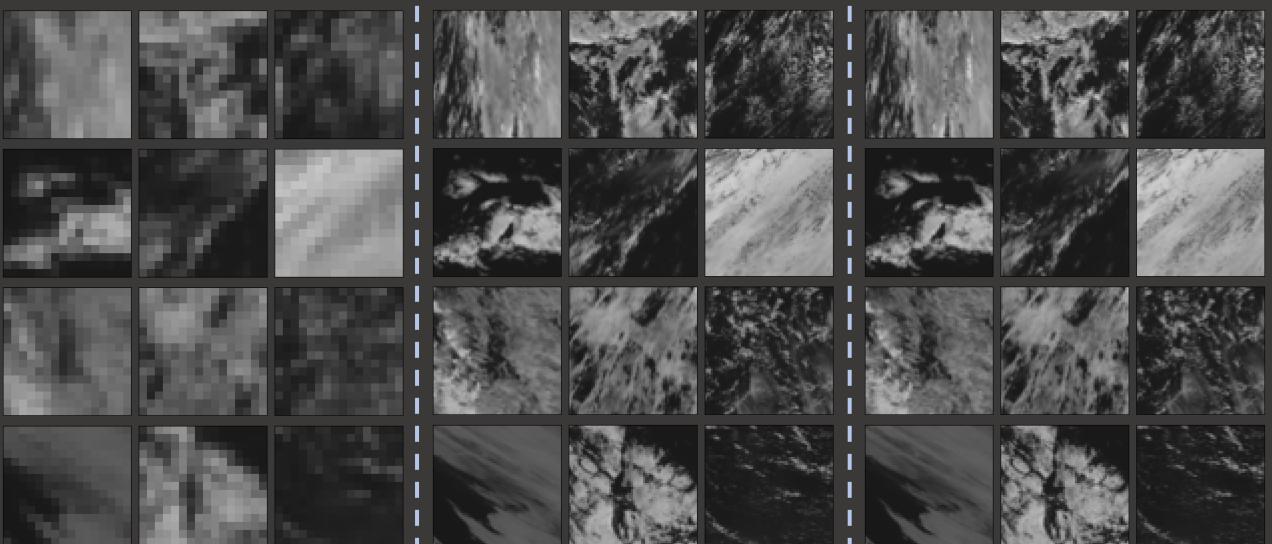
Motivating Questions


- Can we use information from 0.5-km Band-2 to make reasonable 0.5-km imagery from the other ABI channels?
- How accurately can we do this?
 - Spectral relationships
 - Spatial structure
- How do we even evaluate 0.5-km imagery in the first place?


Band Number	Central Wavelength (µm)	Nadir Spatial Resolution (km)
1	0.47	1.0
2	0.64	0.5
3	0.86	1.0
4	1.37	2.0
5	1.6	1.0
6	2.2	2.0
7	3.9	2.0
8	6.2	2.0
9	6.9	2.0
10	7.3	2.0
11	8.4	2.0
12	9.6	2.0
13	10.3	2.0
14	11.2	2.0
15	12.3	2.0
16	13.3	2.0

The Model

Synthetic Low-Resolution Training Data


Reduced Resolution Examples (Band-13, 10.3 µm) Input (8-km) CNN (2-km) Original (2-km)

Reduced Resolution Examples (Band-6, 2.2 µm)

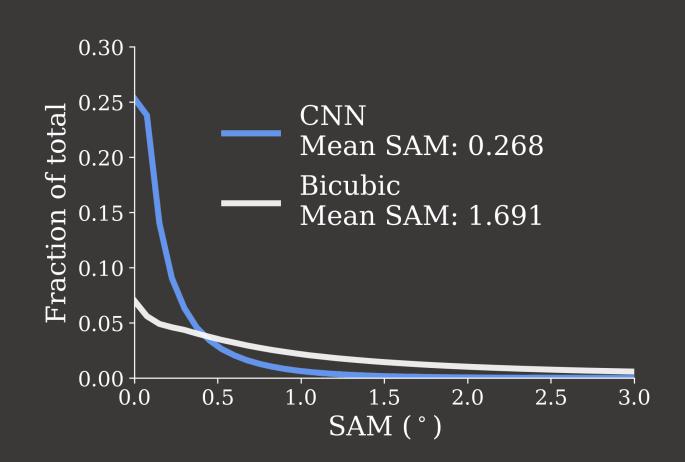
Input (8-km)

CNN (2-km)

Original (2-km)

Reduced Resolution Comparison (RMSE)

- 2X (4-km to 2-km) super-resolution easier than 4X (8-km to 2-km)
- VIS/NIR channels typically better than IR
- The more shared information with the highest resolution band there is, the easier super-resolution will be



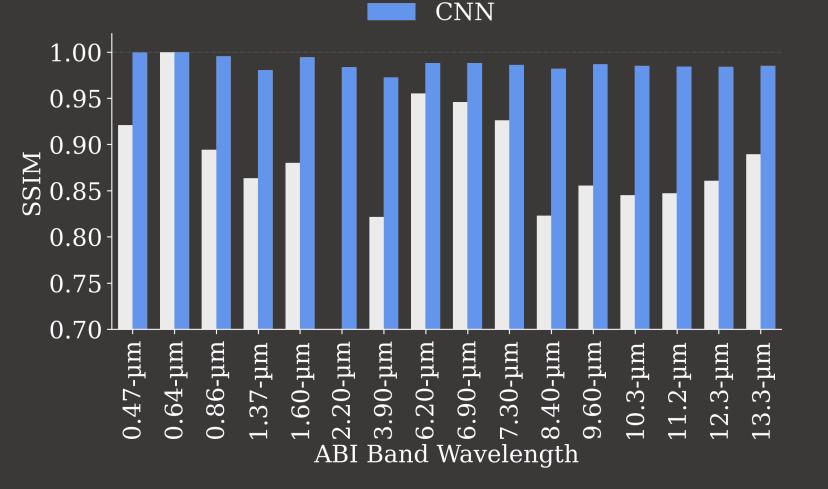
Band	CNN RMSE	Bicubic RMSE	Ratio (CNN / Bicubic)
0.47 μm	0.45	7.75	0.06
<u>0.64</u> μm	 		
0.86 µm	0.48	4.75	0.10
1.37 µm	0.18	0.51	0.35
1.60 µm	0.13	0.86	0.16
2.20 µm	0.072	0.404	0.18
3.90 µm	0.012	0.034	0.35
6.20 μm	0.016	0.032	0.49
6.90 µm	0.043	0.099	0.43
7.30 μm	0.083	0.217	0.39
8.40 µm	0.41	1.46	0.28
9.60 µm	0.27	0.96	0.27
10.3 µm	0.60	2.17	0.27
11.2 µm	0.66	2.37	0.28
12.3 μm	0.68	2.30	0.29
13.3 µm	0.49	1.51	0.32

8

Spectral Distortion

- Spectral Angle Mapper (SAM)
- SAM describes the angle between estimated and reference spectra
- Similar to Cosine Similarity (CS)
- Results imply that CNN has fewer issues with unrepresentative spectra.

$$CS = \frac{\sum_{i=1}^{16} \hat{y}_i y_i}{\sum_{i=1}^{16} \hat{y}_i \sum_{i=1}^{16} y_i} \quad SAM = \cos^{-1}(CS)$$



Structural Similarity Index Measure (SSIM)

• SSIM index is calculated on a sliding window throughout the image

$$SSIM = \frac{(2\mu_x\mu_y + c_1)(2\sigma_{xy} + c_2)}{(\mu_x^2 + \mu_y^2 + c_1)(\sigma_x^2 + \sigma_y^2 + c_2)}$$

- c₁ and c₂ are small constants, exact value determined by dynamic range
- Max=1, Min=-1. Larger is better
- CNN has more accurate spatial structure – adds value for every channel over bicubic interpolation

Bicubic

Evaluation at 0.5-km (Band-6, 2.2 µm)

Native (2.0 km)

Bicubic (0.5 km)

Evaluation at 0.5-km (Band-13, 10.3 µm)

Native (2.0 km)

Bicubic (0.5 km)

Evaluation at 0.5-km (Band-5, 1.6 µm)

Native (1.0 km)

Bicubic (0.5 km)

Comparisons with Landsat 8/9

- Landsat native resolution is 30-m to 100-m
- Needs to be done at the GOES-16 sub-satellite point
- 191 Landsat 8/9 tiles collocated with super-resolved ABI imagery
- Around 25 million individual collocated observations

300 km Radius

OLI/TIRS	Wavelength	Sensor	Spatial
Bands	Range [µm]	Sensor	Resolution [m]
Band-1	0.435 - 0.451	OLI	30
Band-2	0.452 - 0.512	OLI	30
Band-3	0.533 - 0.590	OLI	30
Band-4	0.636 - 0.673	OLI	30
Band-5	0.851 - 0.879	OLI	30
Band-6	1.566 - 1.651	OLI	30
Band-7	2.107 - 2.294	OLI	30
Band-8	0.503 - 0.676	OLI	15
Band-9	1.363 - 1.384	OLI	30
Band-10	10.60 - 11.19	TIRS	100
Band-11	11.50 - 12.51	TIRS	100

Landsat 8/9 Bands

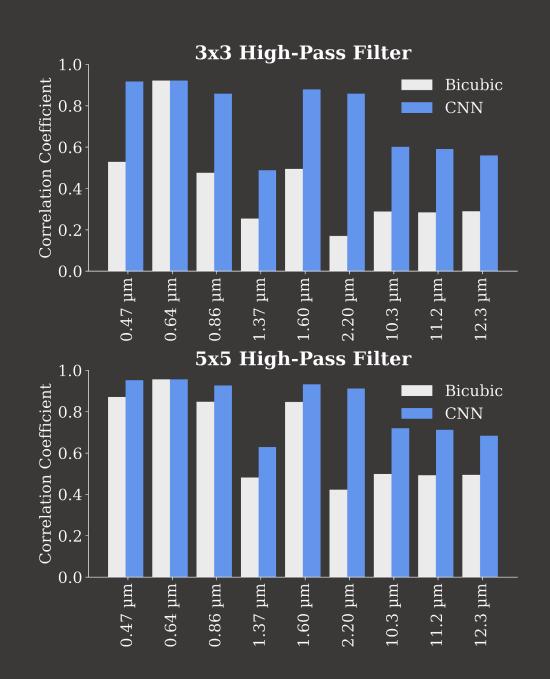
Challenges when comparing to Landsat

1. Landsat has some similar channels, but spectral response is different

2. Time difference of 2-5 minutes between ABI and Landsat Images

Select collocations based on matching spatial patterns in ABI Band-2 and Landsat Band-4

300 km Radius


OLI/TIRS Bands	Wavelength Range [µm]	Sensor	Spatial Resolution [m]
Band-1	0.435 - 0.451	OLI	30
Band-2	0.452 - 0.512	OLI	30
Band-3	0.533 - 0.590	OLI	30
Band-4	0.636 - 0.673	OLI	30
Band-5	0.851 - 0.879	OLI	30
Band-6	1.566 - 1.651	OLI	30
Band-7	2.107 - 2.294	OLI	30
Band-8	0.503 - 0.676	OLI	15
Band-9	1.363 - 1.384	OLI	30
Band-10	10.60 - 11.19	TIRS	100
Band-11	11.50 - 12.51	TIRS	100

Landsat 8/9 Bands

Selected Landsat collocations

- Heavily biased towards stationary surface features, and low-level clouds
- Comparison based on correlations of high-pass filtered imagery (using a 3x3, and 5x5 filter)
- CNN better estimates highfrequency detail when compared to Landsat

Takeaways

- 1. We can super-resolve all 1-km and 2-km channels to 0.5-km on ABI
- 2. CNN adds value according to all metrics used at reduced-resolution
- 3. Full-resolution evaluation confirms CNN inserts realistic texture
- 4. Easily extensible to other satellite imagers
- 5. Preprint coming very soon

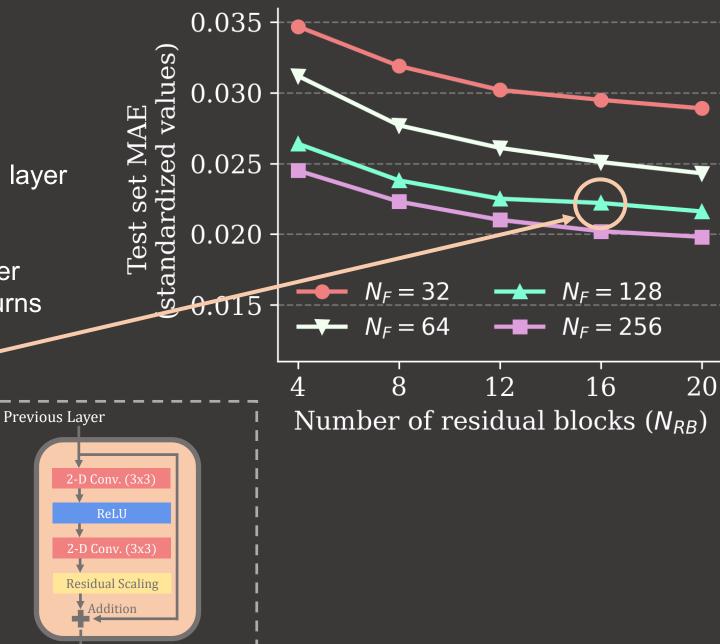
charles.white@colostate.edu

Funding Support NOAA GOES-R and GeoXO Programs AI2ES NSF Institute

Evaluation at 0.5-km (Band-3, 0.86 µm)

Native (1.0 km)

Bicubic (0.5 km)

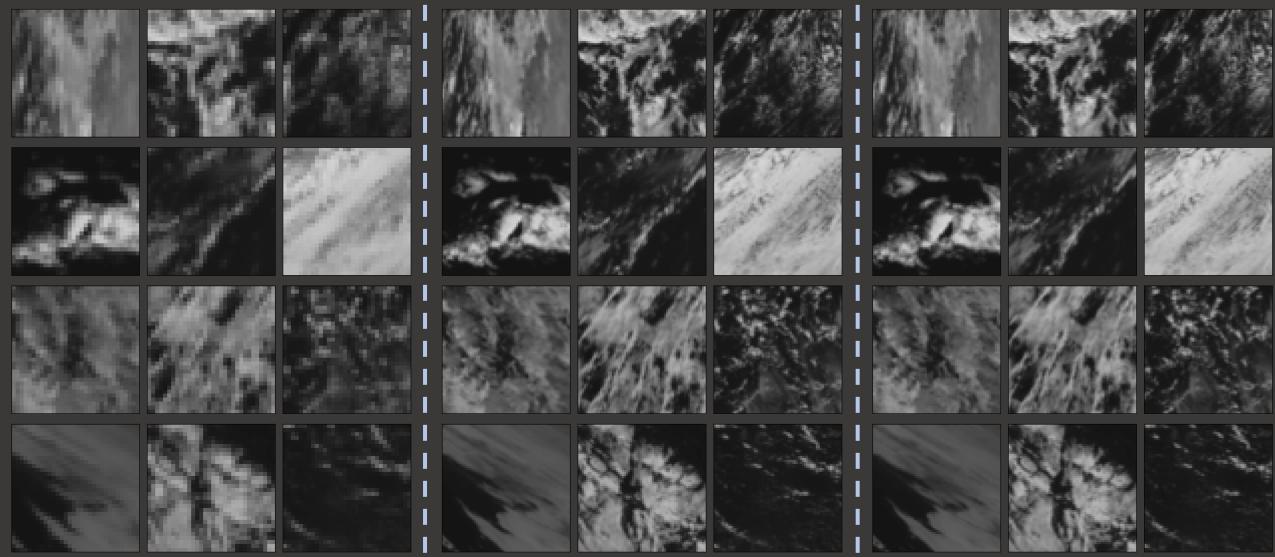


Hyperparameters

- Two main hyperparameters
 - N_F = Filters per convolutional layer

Next Laver

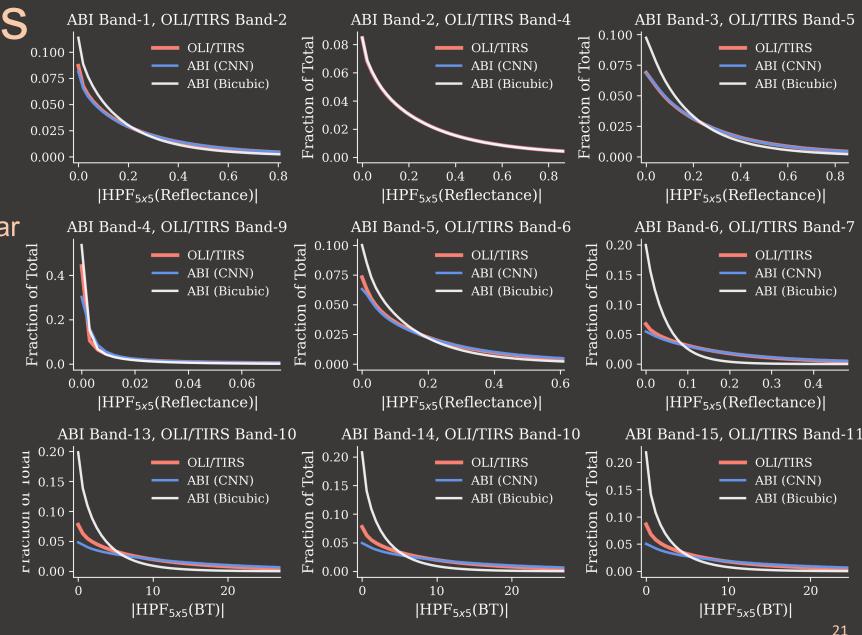
- N_{RB} = *Residual blocks*
- Further increases could give better performance, but diminishing returns
- We use N_F = 128, N_{RB} = 12



Reduced Resolution Examples (Band-5, 1.6 µm)

Input (4-km)

CNN (2-km)


Original (2-km)

All Collocations

- Compare histograms of highpass filtered imagery
- CNN output has a more similar distribution of gradients, but over-sharpens infrared channels
- Confirmed quantitatively by Wasserstein distance

ABI

Band Number	Central Wavelength (µm)	Nadir Spatial Resolution (km)
1	0.47	1.0
2	0.64	0.5
3	0.86	1.0
4	1.37	2.0
5	1.6	1.0
6	2.2	2.0
7	3.9	2.0
8	6.2	2.0
9	6.9	2.0
10	7.3	2.0
11	8.4	2.0
12	9.6	2.0
13	10.3	2.0
14	11.2	2.0
15	12.3	2.0
16	13.3	2.0

Band number	Central Wavelength (µm)	Nadir Spatial Resolution (km)
I-1	0.640	0.375
I-2	0.865	0.375
I-3	1.61	0.375
I-4	3.74	0.375
I-5	11.45	0.375
M-1	0.412	0.75
M-2	0.445	0.75
M-3	0.488	0.75
M-4	0.555	0.75
M-5	0.672	0.75
M-6	0.746	0.75
M-7	0.865	0.75
M-8	1.24	0.75
M-9	1.38	0.75
M-10	1.61	0.75
M-11	2.25	0.75
M-12	3.70	0.75
M-13	4.05	0.75
M-14	8.55	0.75
M-15	10.76	0.75
M-16	12.01	0.75

(requirements)

Central Wavelength (µm)	Nadir Spatial Resolution (km)
0.47	0.5
0.64	0.25*
0.865	0.5
0.91	1.0
1.378	2.0
1.61	1.0
2.25	1.0
3.9	1.0
5.15	1.0
6.185	2.0
6.95	1.0**
7.34	2.0
8.50	2.0
9.61	2.0
10.35	1.0**
11.20	2.0
12.30	2.0
13.30	2.0

