APPLICATIONS WITH METEOROLOGICAL SATELLITES

by

W. Paul Menzel

Office of Research and Applications NOAA/NESDIS University of Wisconsin Madison, WI

July 2004

Unpublished Work Copyright Pending

TABLE OF CONTENTS

CHAP	TER 1 - EVOLUTION OF SATELLITE METEOROLOGY	
1.1 1.2 1.3 1.4	Before Satellites Evolution of the Polar Orbiting Satellites The Geostationary Program Data Processing Capability	1-1 1-1 1-6 1-9
1.5	Summary	1-10
CHAP	TER 2 - NATURE OF RADIATION	
2.1 2.2 2.3 2.4 2.5	Remote Sensing of Radiation Basic Units Definitions of Radiation Historical Development of Planck's Radiation Law Related Derivations 2.5.1 Wien's Displacement Law 2.5.2 Rayleigh-Jeans Radiation Law 2.5.3 Wien's Radiation Law 2.5.4 Stefan-Boltzmann Law 2.5.5 Brightness Temperature	2-1 2-2 2-3 2-6 2-6 2-7 2-7 2-7 2-7
CHAP	TER 3 - ABSORPTION, EMISSION, REFLECTION, AND SCATT	FERING
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16	Absorption and Emission Conservation of Energy Planetary Albedo Selective Absorption and Emission Absorption (Emission) Line Formation Vibrational and Rotational Spectra Summary of Interactions between Radiation and Matter Beer's Law and Schwarzchild's Equation Atmospheric Scattering The Solar Spectrum Composition of the Earth's Atmosphere Atmospheric Absorption and Emission of Solar Radiation Atmospheric Absorption Bands in the IR Spectrum Atmospheric Absorption Bands in the Microwave Spectrum Remote Sensing Regions	3-1 3-2 3-2 3-4 3-5 3-6 3-7 3-9 3-10 3-11 3-11 3-12 3-13 3-14 3-14
CHAP	TER 4 - THE RADIATION BUDGET	
4.1 4.2 4.3 4.4 4.5 4.6	The Mean Global Energy Balance The First Satellite Experiment to Measure Net Radiation The Radiation Budget Distribution of Solar Energy Intercepted by the Earth Solar Heating Rates Infrared Cooling Rates	4-1 4-2 4-3 4-4 4-5
4.7	Radiative Equilibrium in a Gray Atmosphere	4-5

CHAPTER 5 - THE RADIATIVE TRANSFER EQUATION (RTE)

5.1 5.2 5.3	Derivation of RTE Temperature Profile Inversion Transmittance Determinations	5-1 5-4 5-5	
5.4	dholm Form of RTE and Direct Linear Inversion		
5.5	Linearization of the RTE	5-8	
5.6	Statistical Solutions for the Inversion of the RTE	5-8	
	5.6.1 Statistical Least Squares Regression	5-9	
	5.6.2 Constrained Linear Inversion of RTE	5-9	
	5.6.3 Statistical Regularization	5-10	
	5.6.4 Minimum Information	5-11	
F 7	5.6.5 Empirical Orthogonal Functions	5-12	
5.7	Numerical Solutions for the Inversion of the RTE 5.7.1 Chahine Relaxation Method	5-16 5-16	
	5.7.2 Example Problem Using Relaxation Method	5-10	
	5.7.3 Smith's Iteration	5-18	
	5.7.4. Example Problem Using Smith's Iteration	5-20	
	5.7.5 Comparison of Chahine and Smith Iteration Solutions	5-22	
5.8	Direct Physical Solution	5-22	
0.0	5.8.1 Solving Linear RTE Directly	5-22	
	5.8.2 Simultaneous Direct Physical Solution of the RTE	5-24	
5.9	Water Vapor Profile Solutions	5-26	
5.10	Microwave Form of RTE	5-28	
CHAP	TER 6 - DETECTING CLOUDS		
6.1	RTE in Cloudy Conditions	6-1	
6.2	Inferring Clear Sky Radiances in Cloudy Conditions	6-2	
6.3	Finding Clouds	6-3	
	6.3.1 Threshold Tests for Finding Cloud	6-4	
	6.3.2 Spatial Uniformity Tests to Find Cloud	6-8	
6.4	The Cloud Mask Algorithm	6-10	
	6.4.1 Thick High Clouds	6-10	
	6.4.2 Thin Clouds	6-10	
	6.4.3 Low Clouds	6-11 6-11	
	6.4.4 Thin High Clouds6.4.5 Ancillary Data Requirements	6-11	
	6.4.6 Implementing the Cloud Mask Algorithms	6-12	
	6.4.7 Clear Sky Composite Maps	6-13	
6.5	Cloud Properties Derived in a MODIS Granule	6-13	
0.0	6.5.1 Cloud Masking	6-13	
	6.5.2 Cloud Thermodynamic Phase	6-14	
	6.5.3 Cloud Top Pressure and Effective Cloud Amount	6-14	
	6.5.4 Cloud Optical and Microphysical Properties	6-15	
	6.5.5 Detection of Multi-layerd Clouds	6-15	
	6.5.6 Global Gridded Products	6-16	
6.6	Ongoing Cloud Climatologies	6-17	
	6.5.1 ISSCP	6-17	
	6.5.2 CLAVR	6-17	
	6.5.3 CO2 Slicing	6-18	

CHAPTER 7 - SURFACE TEMPERATURE

7.1	Sea Surface Temperature Determination	7-1
	7.1.1 Slope Method	7-1
	7.1.2 Three point Method	7-2
	7.1.3 Least Squares Method	7-2
7.2.	Water Vapor Correction for SST Determinations	7-3
7.3	Accounting for Surface Emissivity in the Determination of SST	7-5
7.4	Estimating Fire Size and Temperature	7-6

CHAPTER 8 - TECHNIQUES FOR DETERMINING ATMOSPHERIC PARAMETERS

8.1	Total Water Vapor Estimation	8-1
	8.1.1 Split Window Method	8-1
	8.1.2 Split Window Variance Ratio	8-1
	8.1.3 Perturbation of Split Window RTE	8-3
	8.1.4 Microwave Split Window Estimation of Vapor and	Liquid 8-3
8.2	Total Ozone Determination	8-4
	8.2.1 Total Ozone from Numerical Iteration	8-4
	8.2.2 Physical Retrieval of Total Ozone	8-5
	8.2.3 HIRS Operational Retrieval of Total Ozone	8-7
8.3	Cloud Height and Effective Emissivity Determination	8-8
8.4	Geopotential Height Determination	8-10
8.5	Microwave Estimation of Tropical Cyclone Intensity	8-11
8.6	Satellite Measurement of Atmospheric Stability	8-13
CHAF	PTER 9 - TECHNIQUES FOR DETERMINING ATMOSPHE	RIC MOTIONS
9.1	Atmospheric Motion	9-1
9.2	Geostrophic Winds	9-1

9.Z	Geostrophic winds	9-1
9.3	Gradient Winds	9-1
9.4	Thermal Winds	9-2
9.5	Inferring Winds from Cloud Tracking	9-4
	9.5.1 Current Operational Procedures	9-5

CHAPTER 10 - AN APPLICATION OF GEOSTATIONARY SATELLITE SOUNDING DATA

10.1	Detection of Temporal and Spatial Gradients	10-1
10.2	VAS Detection of Rapid Atmospheric Destabilization	10-1

10.2VAS Detection of Rapid Atmospheric Destabilization10-110.3Operational GOES Sounding Applications10-3

CHAPTER 11 - SATELLITE ORBITS

11.1	Orbital Mechanics	11-1
11.2.	The Geostationary Orbit	11-2
11.3	Orbital Elements	11-3
11.4	Gravitational Attraction of Non-spherical Earth	11-3
11.5	Sunsynchronous Polar Orbit	11-4

CHAPTER 12 - RADIOMETER DESIGN CONSIDERATIONS

12.1	Components and Performance Characteristics	12-1
12.2	Spectral Separation	12-1
12.3	Design Considerations	12-1
	12.3.1 Diffraction	12-1
	12.3.2 The Impulse Response Function	12-2
	12.3.3 Detector Signal to Noise	12-2
	12.3.4 Infrared Calibration	12-3
	12.3.5 Bit Depth	12-5

CHAPTER 13 - ESTABLISHING CLIMATE DATA RECORDS FROM MULTISPECTRAL MODIS MEASUREMENTS

13.1	The MODIS Spectral Bands	13-1
13.2	Climate Questions	13-1
13.3	MODIS Product Descriptions	13-4
13.3	MODIS Product Descriptions	13-4
13.4	MODIS and Climate Questions	13-10

CHAPTER 14 - THE NEXT GENERATION OF SATELLITE SYSTEMS

14.1	The Global Observing System	14-1
14.2	Meeting Remote Sensing Requirements in the next two decades	14-2
14.3	Current and Future Polar Platforms	14-3
14.4	Current and Future Geostationary Platforms	14-8
14.5	Thoughts on the Future Global Observing Satellite System	14-9

CHAPTER 15 – INVESTIGATING LAND, OCEAN, AND ATMOSPHERE WITH MULTISPECTRAL MEASUREMENTS

15.1	Introducing Hydra – a multispectral data analysis toolkit	15-1
15.2	Starting Hydra	15-2
15.3	Exploring the MODIS spectral bands	15-7
15.4	Detecting Clouds	15-18
15.5	Mapping Vegetation	15-20
15.6	Investigating a Volcanic Eruption	15-20
15.7	Investigating Coastal Waters	15-22

APPENDIX A - EIGENVALUE PROBLEMS

A.1	Summary of Matrices	A-1
A.2	Eigenvalue Problems	A-2
A.3	CO2 Vibration Example	A-4

APPENDIX B - REFERENCES

APPENDIX C – PROBLEMS

APPENDIX D - EXAMS