

NAST/SHIS Cal-Val: Selected Examples Hank Revercomb

University of Wisconsin - Madison Space Science and Engineering Center (SSEC)

NAST-2 Development Workshop NASA LaRC, 10-11 July 2003 Calibration and Validation for IR radiance observations are now concerned with tenths of K, not degrees K !

High Spectral Resolution is an important part of the reason

TOPICS

1. NAST Non-linearity

2. Scanning-HIS

Fall 2002 - Oklahoma

Oklahoma, ARM UAV "Grand Tour" (SHIS on Proteus at 15 km, 16 Nov 2002)

3. AIRS Radiance Validation:

Gulf of Mexico, Terra/Aqua 2002 (SHIS on ER2 at 20 km, 21 Nov 2002)

NAST Non-linearity

NAST-HIS Comparison: Long-wave Non-linearity

Original HIS used linear Ar:Si detectors at 6 K

NAST non-linearity correction works well, but the correction is large (SHIS is smaller by ≈ 2.5)

Detectors with smaller non-linearity would reduce calibration uncertainty

CIMSS/SSEC

NAST-HIS Comparison: Mid-wave Non-linearity

Brightness Temperature corrections are larger for the mid-wave than for the long-wave

NAST-AERI Comparison:

Long-wave Non-linearity

AERI Non-linearity correction is about an order of magnitude smaller

Uplooking is a more sensitive test than downlooking in the Long-wave

Out-of-band Non-Linearity Signature

Access to out-of-band spectral signatures is important to identifying and evaluating any source non-linearity

Should allow the numerical filter to be bypassed for testing

S-HIS Uplooking

UW Scanning HIS: 1998-Present

(HIS: High-resolution Interferometer Sounder, 1985-1998)

Characteristics

Spectral Coverage: 3-17 microns
Spectral Resolution: 0.5 cm⁻¹
Resolving power: 1000-6000
Footprint Diam: 1.5 km @ 15 km
Cross-Track Scan: Programmable including uplooking zenith view

Applications:

- Radiances for Radiative Transfer
- Temp & Water Vapor Retrievals
- Cloud Radiative Prop.
- ♦ Surface Emissivity & T
- Trace Gas Retrievals

SSEC Scanning HIS on 1st ARM-UAV Mission with Proteus, October 2002

S-HIS scans crosstrack downward & looks upward

Scanning-HIS Radiometric Calibration Budget for 11/21 case $T_{ABB} = 260$ K, $T_{HBB} = 310$ K

Scanning-HIS Radiometric Calibration Budget for 11/21 case $T_{ABB} = 260$ K, $T_{HBB} = 310$ K

Scanning-HIS LW/MW and MW/SW Band Overlap 11-16-2002

S-HIS zenith and cross-track scanning Earth views 11-16-2002 from Proteus @ ~14km

Observed and Caculated zenith views from Proteus @ ~14km

Calculation based on 18Z ECMWF analysis, with 0.0004 cm H_2O above 14km

Radiance Validation of AIRS with S-HIS

AIRS / SHIS Comparisons

A detailed comparison should account for:

- instrumental noise and scene variations
- Different observation altitudes (AIRS is 705km, SHIS is ~20km on ER2, ~14km on Proteus)
- Different view angles (AIRS is near nadir, SHIS is ~±35deg from nadir)
- Different spatial footprints (AIRS is ~15km at nadir, SHIS is ~2km at nadir)
- Different spectral response (AIRS $\Delta v = v/1200$, SHIS $\Delta v = ~0.5$ cm⁻¹) and sampling

5

AIRS / SHIS Comparison steps

- 0. <u>Average SHIS data within AIRS FOV(s) & compare</u>
 No attempt to account for view angle, altitude, spectral differences.
- <u>Compare Residuals from calculations</u>: (obs-calc)_{SHIS} to (obs-calc)_{AIRS}
 - SHIS and AIRS calcs each done at correct altitudes, view angles, spectral resolution and sampling.
 - Monochromatic calcs done using same forward model, atmospheric state, and surface property inputs.
- 2. Difference Residuals: Spectral Resolutions made similar
 - valid comparison except for channels mainly sensitive to upper atmosphere, above proteus altitude

MODIS 12 μm Band Tbs(K) & near-nadir AIRS FOVs

MODIS 12 micron Band & near-nadir AIRS FOVs

8 AIRS FOVs used in the following comparisons

"comparison 0" 8 AIRS FOVs, 448 SHIS FOVs, PC filtering

<u>AIRS</u> Compared to <u>S-HIS</u>, 21 Nov 2002

Small Spectral Shift (3% of resolution) in AIRS Module-05 identified from S-HIS Validation

Summary

•The calibration uncertainty of advanced high spectral resolution observations are approaching the 0.1 K desired for climate applications

•Aircraft high spectral resolution observations from Scanning-HIS [& its cousin the NPOESS Airborne Sounder Testbed (NAST)] are now proven tools for the detailed validation of satellite based observations

• AIRS is providing high quality global radiances for atmospheric sounding and climate applications

