NASTER Workshop

S-HIS Lessons Learned

NASA LaRC July 10 & 11, 2003

S-HIS Overview

UW <u>Scanning HIS</u>: 1998-Present (HIS: High-resolution Interferometer Sounder, 1985-1998)

Characteristics

Spectral Coverage: 3-17 microns
Spectral Resolution: 0.5 cm⁻¹
Resolving power: 1000-6000
Footprint Diam: 1.5 km @ 15 km
Cross-Track Scan: Programmable including uplooking zenith view

Applications:

- Radiances for Radiative Transfer
- Temp & Water Vapor Retrievals
- Cloud Radiative Prop.
- ♦ Surface Emissivity & T
- Trace Gas Retrievals

S-HIS Platforms

Uplooking & Cross-track

Worked Well on S-HIS Consider for NASTER

Worked Well-Consider for NASTER

- Extensive Housekeeping System
- Tilt Measurement and Correction
- Unpressurized Interferometer
- Flexible Control System
- Robust and upgradeable Data Storage Capability
- Uplook View
- Split Cycle Stirling Cooler
- Detector Aperture Sharing

Worked Well-Consider for NASTER

- Small Size, Mass, and Power with Modularity
- Electronic Static Tilt Adjustment
- Base Instrument Power on 28 VDC
- Michelson Drive linear bearing based drive
- Dynamic Alignment Stiffening and Damping
- ABB tightly coupled to ambient temperature

Extensive & Flexible Housekeeping System

- 128 samples are collected every 1/2 second
- There are 72 different engineering parameters that can be assigned in any combination to the 128 samples
- The following have proven to be very useful
 - Temperatures to monitor blackbodies and the thermal performance (structure, electronics, critical components)
 - Detector temp. and cooler current to monitor cooler health
 - DA Motor Voltages, ZPD Magnitudes, Laser Intensity

Tilt Measurement & Correction

- Implementation of an interferometer mirror Tilt Monitoring System has allowed S-HIS to measure vibration induced tilt.
- S-HIS showed that tilts can be measured and corrected for in ground processing
- For NASTER tilt artifacts could be removed during flight (correction built into hardware), or during post-flight ground processing.
- Tilt measurements can be used for vibration diagnostics

Unpressurized Interferometer

- The S-HIS Interferometer is unpressurized. It exhausts pressure on ascent through a 0.5 psig relief valve. During descent incoming air is passed through desiccators.
- Benefits of this system include:
 - No pump-down required on ground
 - Easier to eliminate detectable quantities of H_20
 - Less structural mass
- This system is useful for any box

Flexible Control System

- The S-HIS had programmable settings for key operational parameters
 - Scene mirror angles and number of interferometer scans at each scene
 - Blackbody temperatures
 - Housekeeping parameters
 - Fault Protection System

Robust and Upgradeable Data Storage Capability

- The original S-HIS data storage computer was a hardened laptop enclosed in a pressurized enclosure. This system was heavy and needed additional vibration isolation to operate.
- A new data storage computer was developed that uses a Solid State Drive (SSD). This system requires no pressurization and was demonstrated on both the ER-2 and Proteus platforms

S-HIS Data Storage Computer

CPU Chip Cooling Fan

CPU with -Heat Sink

> Main Board With I/O Modules

Heated Heat Sink

> [Solid State Drive on Bottom Side]

Air Mixing Fan Coupled to Flow-through Heated Heat Sink

Storage volume is easily expanded

Data Storage Computer Specifications

- Versalogic VSBC-8 single board PC/104+, 5V
- Celeron 566MHz low-power, 128MB RAM
- 4 ATA, 2 RS-232, 2 RS-232/422/485, 2 USB
- ECP Parallel Port
- 100MBit Ethernet
- 8-Channel single-ended ADC
- IRIG-B PC/104 time sync
- 3-port FireWire/IEEE1394 PC/104+ board
- Analog video/audio digitizer PC/104+ board
- 8.7GByte BitMicro Solid State Disk

Data Storage Software

- Embedded Linux, 2.4 kernel
 - Bootstrap from FAT filesystem to RAMdisk
 - Journaled filesystem (ReiserFS) for data
- GNU development environment
- RS-232 + EPP Parallel link to control DSP
- RS-232 / IRIG-B link to aircraft
- Streams of "RSH" raw data
 - Sequence of blocks of packets
 - Half hour per RSH file (<=200MB)

Uplook View

- Provides a good check on calibration
- Useful for providing constraint on
 - Upper level water vapor
 - Cloud emissivity

Split Cycle Stirling Cooler

- Allows vibration isolation
- Simplifies cooler replacement

Compliant Transfer Tube Allows mechanical decoupling

Detector Aperture Sharing

- Provided very compact optical design (at expense of performance hit)
- Only one cooler required for four bands

Small Size, Mass, & Power, Along With Modularity

- Small Size, Mass, & Power, Along with Modularity provides:
 - easier intigration to multiple platforms
 - greater opportunity to fly with other instruments on a given platform

Electronic Static Tilt Adjustment

- Allows DA mirror to have a static offset
- In S-HIS this reduces the susceptibility to magnitude tilt errors

Base Instrument Power on 28 VDC

- S-HIS Started out using both 28 VDC and 400 Hz power
- In going to the Proteus the 400 Hz requirement was eliminated.
- This is beneficial because:
 - Eliminates bulky ground support power supply
 - Some platforms will not have 400 Hz avalilable

Michelson Drive Linear Bearing-based Drive

- As-delivered Bomem flexure-based drive gave large vibration induced tilt.
- New linear bearing based drive is considerably stiffer.
- New drive uses voice coil actuator and original Bomem tachometer and drive electronics

S-HIS Linear Bearing Based Michelson Drive

S-HIS Linear Bearing Based Michelson Drive

Comparison of Tilt Spectra measured during flight form the **old** and **new** Michelson Drive assemblies as measured by the S-HIS laser based dynamic Alignment system. The new drive eliminates significant tilt dynamic amplitude Below 600 Hz. In addition, the overall tilt magnitude is lower by almost a factor 6 with the new drive.

Dynamic Alignment Stiffening and Damping

- The as-delivered Bomem Dynamic Alignment Mechanism was modified to eliminate or significantly reduce effects of mechanical resonances within the range of rejected frequencies.
- Changes include:
 - Voicecoil mounting was changed from the mirror support plate to the cover plate
 - Mirror support plate and cover were stiffened
 - Damping was added to the mirror support plate, and cover
 - Damping was also added between the voicecoil and the cover plate
- DA Changes allowed servo gain to be raised significantly
- DA must be tuned for the platform

Modified Dynamic Alignment System

ABB Tightly Coupled to Ambient Temperature

- Radiometric accuracy was improved by better coupling the ABB to the ambient temperature during flight
- The ABB on S-HIS was originally configured to be moderately coupled to the front-end support structure. This allowed the ABB to get cold but provided enough thermal insulation to allow heating during descent to protect BB.
- The "moderate" thermal coupling did not allow the BB to track ambient temperature adequately
- The solution was full thermal isolation from the front-end structure and direct coupling to the ambient air (cooling fins coupled to cavity with a fan)

ABB Implementation that Povides Coupling to Pod Ambient Air via Fan

ABB Cavity closely tracks the Pod Ambient Air Temperature

Software Design

S-HIS Flight Control Software

- TI DSP C40 Controller Processor
 - Performs real-time ingest sequencing
 - Custom DSP assembly software
 - Downloads data to Storage Computer
 - High reliability, not as flexible as desired
- TI DSP C40 Science Processor
 - Filtering and decimation of raw interferograms
 - Negligible remaining margins for additional functions

Recommend for NASTER

- QNX, VxWorks, RTMS or Linux/RTLinux
- Streaming data model
 - Sequence of groups of packets
 - Real-time monitoring over network socket
 - Break into ~200MByte files
 - Download data from instrument over network
- Strict decoupling of data collection from both data storage and interpretation logic
- Journaled filesystem for data, RAMdisk for OS
- Use GNU / Open Source tools for longevity

Remote Capabilities: Configuration

- Select new blackbody set-points
- Mirror sequence reprogramming
- Load instrument test software into RAM
- Load flight software into flash

Remote Capabilities: Operations

- Full instrument telemetry stream
 - Science GUI
 - Engineering GUI
- Descent-mode toggle
- Generate instrument status summary onboard
 - Low-bandwidth text block for downlink
- Check data stream integrity
- Reset mirror sequencing
- Change output file

S-HIS Example Interferogram Data Path

Additional Things to Consider for NASTER

Additional Things to Consider for NASTER

- Velocity Monitoring
- 3rd Blackbody
- Visible Imaging System
- IR Imaging System

Back-up

SSEC Scanning HIS on 1st ARM-UAV Mission with Proteus, October 2002

S-HIS scans crosstrack downward & looks upward

Scanning-HIS Radiometric Calibration Budget for 11/21 case $T_{ABB} = 260$ K, $T_{HBB} = 310$ K

Calibration Errors at 1600 cm⁻¹

×					
Input Paramete	ers		<u>Uncertainties</u>		
wn	1600	Wavenumber, [cm-1]			
Thbb	310	Temp. of Hot Blackbody, [K]	² Thbb	0.1	[K]
Tebb	260 240	Temp. of Cold Blackbody, [K]	² Tcbb	0.1	[K]
1 str Fbbb	240	Finispoint of HBB [-]	² I Str 2Fhbh	5	[K] [_]
Ecbb	0.999	Emissivity of CBB, [-]	²Ehbb	0.001	[-]
		·y · · · / L a			

Calibration Errors at 1600 cm⁻¹

Input Parame	<u>ers</u>		Uncertainties		
Input Parame wn	<u>ers</u> 1600	Wavenumber, [cm-1]	Uncertainties		
Input Parame wn Thbb	ers 1600 310	Wavenumber, [cm-1] Temp. of Hot Blackbody, [K]	Uncertainties ² Thbb	0.1	[K]
Input Parame wn Thbb Tcbb	ers 1600 310 227 240	Wavenumber, [cm-1] Temp. of Hot Blackbody, [K] Temp. of Cold Blackbody, [K]	Uncertainties ² Thbb ² Tcbb 7Tctb	0.1	[K] [K]
Input Parame wn Thbb Tcbb Tstr	ers 1600 310 227 240 0 000	Wavenumber, [cm-1] Temp. of Hot Blackbody, [K] Temp. of Cold Blackbody, [K] Temp. of Structure Reflecting into BB's, [K]	Uncertainties 2Thbb 2Tcbb 2Tstr	0.1 0.1 5	[K] [K]

Impact of Various ABB Temperatures

Impact of Various ABB Temperatures

Important to have ABB well coupled to Ambient Temperature

Scanning-HIS Radiometric Calibration Budget for 11/21 case $T_{ABB} = 260$ K, $T_{HBB} = 3$ 0K

Scanning-HIS Radiometric Calibration Budget for 11/16 case $T_{ABB} = 227$ K, $T_{HBB} = 310$ K

