## NASTER Workshop

#### Calibration

NASA LaRC July 10 & 11, 2003





#### Topics

- Expected NASTER calibration performance
- Requirements flow-down to NASTER Blackbodies
- NAST/S-HIS Blackbody Subsystem proposed for NASTER
- NAST & S-HIS Calibration Performance Review

## Expected NASTER Calibration Performance

#### NASTER Instrument Calibration Relationship

$$N = (B_H - B_A) \operatorname{Re} \left( \frac{C_S - C_A}{C_H - C_A} \right) + B_A$$

- *N* is the calibrated spectral radiance
- $B_H$  is the effective Planck emission for the hot blackbody
- $B_A$  is the effective Planck emission for the ambient blackbody
- $C_S$  is the complex spectrum for the sky view
- $C_H$  is the complex spectrum for the hot blackbody view
- $C_A$  is the complex spectrum for the ambient blackbody view
- Re() is the real part of the complex ratio

#### Expected Calibration Errors at 770 cm<sup>-1</sup>



| Input Paramete | <u>rs</u> |                                              | <b>Uncertainties</b> |       |     |
|----------------|-----------|----------------------------------------------|----------------------|-------|-----|
| wn             | 770       | Wavenumber, [cm-1]                           |                      |       |     |
| Thbb           | 310       | Temp. of Hot Blackbody, [K]                  | <sup>2</sup> Thbb    | 0.1   | [K] |
| Tcbb           | 230       | Temp. of Cold Blackbody, [K]                 | <sup>2</sup> Tcbb    | 0.1   | [K] |
| Tstr           | 240       | Temp. of Structure Reflecting into BB's, [K] | <sup>2</sup> Tstr    | 5     | [K] |
| Ehbb           | 0.999     | Emissivity of HBB, [-]                       | 2Ehbb                | 0.001 | [-] |
| Ecbb           | 0.999     | Emissivity of CBB, [-]                       | 2Ehbb                | 0.001 | [-] |
|                |           |                                              |                      |       |     |

#### Expected Calibration Errors at 1600 cm<sup>-1</sup>





Scanning-HIS Radiometric Calibration Budget for 11/16 case  $T_{ABB} = 227K$ ,  $T_{HBB} = 310K$ 

#### NASTER Expected Performance

 $T_{ABB} = 227K, T_{HBB} = 310K$ 



#### Requirements Flow-down to NASTER Blackbodies

#### NASTER Blackbody Requirements (TBR)

| <u>The blackbody system requirements are (TBR):</u> |                        |  |  |
|-----------------------------------------------------|------------------------|--|--|
| • Temperature knowledge:                            | ±0.1 K                 |  |  |
| • Emissivity:                                       | better than 0.999      |  |  |
| • Emissivity knowledge:                             | better than ±0.1%      |  |  |
| • Temperature gradient :                            | knowledge within 0.1 K |  |  |

#### NASTER Instrument imposed requirements and allocations (TBR):

| • | BB Aperture:                     | 2.54 cm                  |
|---|----------------------------------|--------------------------|
| • | BB Envelope                      | 8.0 cm Dia. X 14 cm long |
| • | <b>BB</b> Operating Temperature: | 220 to 330 K             |
| • | Mass (2 BB's and Controller):    | < 5.0 lb                 |
| • | Power (2 BB's and Controller):   | < 10.0 W                 |

## NAST/S-HIS Blackbody System Proposed for NASTER

#### Blackbody Subsystem Block Diagram



\*The Blackbody Controller can be programmed to allow for automatic updating or it can be used as a polled device. The update period is programmable.

System includes two blackbodies and a controller

## S-HIS/NAST Blackbody Controller



| Size:         | 6" x 14" x 1.75"          |
|---------------|---------------------------|
| Weight:       | <3.0 lb                   |
| <b>Power:</b> | <2.0 W (not inc. BB htr.) |

#### Blackbody Geometry AERI, NAST, S-HIS, GIFTS, & Proposed NASTER



# Blackbody Top Level Design Choices

#### Cavity Approach

- Provides high emissivity (cavity factor near 100)
- Emissivity enhancement due to cavity is well characterized
- Cavity walls provide good conduction (low gradients)
- Easy to manufacture

#### • Chemglaze Z306 Paint

- Provides high emissivity that is well characterized and stable
- Provides a hardy surface
- Thermistor Temperature Sensors
  - Very Stable (0.01 K drift after 100 months at 70 K)
  - Easy to couple thermally to blackbody cavity
  - Reasonably rugged

## Summary of Blackbody Temperature Error Contributions

#### **TEMPERATURE (errors in degrees K)**

| <ul> <li>Calibration System Errors</li> </ul>                                      | ± peak error    | (RSS)         |
|------------------------------------------------------------------------------------|-----------------|---------------|
| Temperature Transfer Standard (Guildline)                                          | 0.030           |               |
| <ul> <li>Blackbody Controller (resistance measurement)</li> </ul>                  | 0.010           |               |
|                                                                                    | RSS ± 0.032     | ± 0.032       |
| <ul> <li>Thermistor Temperature Calibration</li> </ul>                             | ± peak error    |               |
| Calibration Temperature Gradient Uncertainty                                       | 0.020           |               |
| Calibration Coefficient Fit Error                                                  | 0.003           |               |
| Long Term Stability                                                                | 0.060           |               |
|                                                                                    | RSS ± 0.063     | ±0.063        |
| <ul> <li>Cavity Temperature Non-uniformity Correction Uncertainty</li> </ul>       | ± peak error    |               |
| Azumuthal Gradients Due to Free Convection                                         |                 |               |
| Body Credinate Due to Conduction Convertion and Pediation                          | 0.040           |               |
| Adular Gradients Due to Conduction, Convection, and Kadiation     A point Gradient | 0.040           |               |
|                                                                                    | RSS ± 0.050     | ±0.050        |
| • Effective Padiometric Temperature Weighting Factor Uncertainty                   | , pook orror    |               |
| • Enective Nationet in Temperature Weighting factor Orice tanty                    |                 | 0.020         |
| • Monte Carlo Ray Trace Model Uncertainty in Determining Tem                       | $R55 \pm 0.030$ | ± 0.030       |
|                                                                                    |                 |               |
|                                                                                    | Total           | Error + 0.092 |
|                                                                                    | (               | RSS)          |

## BB Emissivity

• Emissivity

better than 0.999 better than 0.001

$$\mathbf{R} = \mathbf{e} * \mathbf{B}(\mathbf{T}_{\text{eff}}) + (1 - \mathbf{e}) * \mathbf{B}(\mathbf{T}_{\text{refl}})$$

 $T_{eff} = w_1 * T_A + w_2 * T_B$ 

B(T) = Planck radiance at T

R

e, w1, and w2 are computed using a Monte Carlo based cavity model.

#### Paint Emissivity vs Thickness



## Monte Carlo Comparisons



## Summary of Emissivity Error Contributions

| EMISSIVITY (errors in cavity emissivity)                                                                                     | ± peak error       | (RSS)               |
|------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------|
| {Ep=0.94, <sup>2</sup> Ep=0.0024 (2σ), f=100 } • Paint Witness Sample Measurement (4% (2σ) of the reflectivity of the paint) | ± 0.000036         | ± 0.000036          |
| Paint Application Variation                                                                                                  | ±0.000060          | ±0.000060           |
| Cavity Factor Uncertainty                                                                                                    | ± 0.000400         | ± 0.000400          |
| Long Term Stability                                                                                                          | ± 0.000180         | ± 0.000180          |
| Ec=1-(1-Ep)/f                                                                                                                | Total Erro<br>(RSS | or ±<br>5) 0.000444 |

#### NAST & S-HIS Calibration Performance Review

## Blackbody Subsystem Heritage

- AERI (groundbased), S-HIS and NAST (aircraft) FTIR Instruments have demonstrated Radiometric Performance with accuracies better than the 1 K required for atmospheric remote sensing.
- These programs have successfully demonstrated a common methodology that integrates instrument Calibration Models and on-board blackbody Calibration Techniques using NIST traceable standards.

# AERI / NIST Blackbody Intercomparison-LW



@ 333K, Max Error <0.035K</li>
@ 303K, Max Error <0.050K</li>
@ 293K, Max Error <0.065K</li>



# AERI / NIST Blackbody Intercomparison-SW



@ 333K, Max Error <0.030K</li>
@ 303K, Max Error <0.030K</li>
@ 293K, Max Error <0.015K</li>





## A ERI Spectra



AERI00

AERI01

950

## Back-up

### Monte Carlo Comparisons



# Typical AERI Instrument End-toend Radiometric Lab Validation

Intermediate BB





## AERI Instrument End-to-end Radiometric Calibration Configuration



#### Blackbody Traceability and Error Budget



#### Blackbody Traceability and Error Budget



#### Impact of Various ABB Temperatures



#### Important to have ABB well coupled to Ambient Temperature

#### Impact of Various ABB Temperatures



#### Important to have ABB well coupled to Ambient Temperature