

NASTER System Definition Proposal

© Copyright 2003 ABB Bomem Inc. All rights reserved. - 7/14/03 Page 1

Overview

- Review and comment the mid-IR requirements
- Presentation of ABB's current platform technology
- Proposed approach for mid-IR NASTER
- Proposed approach for initial NASTER
- Discussion

Review of Requirements

- The first NASTER Strawman requires wide coverage and high spectral resolution
- A modular concept has been developed to address as much as possible the entire specification
- Mid-IR NASTER Strawman requirements are less constraining on the spectral coverage and resolution
- Modules of the initial concept have been used to address this new specification
- We review the Mid-IR requirement first

- Spectral Limits (SL): 665 2860 cm⁻¹ (3.5 15 microns)
 - We suggest to split the range in 2 bands at 1750 cm⁻¹ (5.7 microns)

Spectral Coverage

© Copyright 2003 ABB Bomem Inc. Page 5

- Spectral Resolution (SR): Selectable from 0.25 1.25 cm⁻¹
 - Resolution limits maximum divergence inside interferometer
 - Off-axis pixels result in more constraining limitations
 - We suggest 0.25 cm⁻¹ for the mid-wave and 0.5 cm⁻¹ for the short wave and use off-axis IFOV's with an inverse telescope (0.5)

- Ground Resolution (GR): Contiguous at ≤ 500 meters from 20 km flight altitude within single FOR
 - Defines IFOV of 25 mrad
 - We suggest 250 meters ground resolution (12.5 mrad IFOV)
- Field of Regard (FOR): ≤ 2 km from 20 km flight altitude
 - Requirement suggests a 4x4 detector array
 - We suggest an 8x8 detector array to cover the 100 mrad square FOR

- Along-track Scan Coverage (ATSC): ≤ 2 km FOR contiguity at 20 km for an aircraft speed of 400 kts
 - Speed and IFOV defines observation time of 10 seconds
 - Motion compensation and 10 seconds observation time provide contiguous along-track coverage
- Cross-track Scan Coverage (CTSC): Selectable from 2 to 20 km, depending on spectral resolution, from 20 km flight altitude for an aircraft speed of 400 kts
 - Defines a minimum observation time of 1 second

Noise Equivalent delta Temperature (NEdT): Spectrally random brightness temperature ≤ 0.25 K @ 0.25 cm⁻¹ spectral resolution within the spectral range of 4.5 to 14 microns scene temperature of ≤ 260 K

© Copyright 2003 ABB Bomem Inc. Page 9

- Absolute Error (AE): Absolute brightness temperature error ≤ 0.5 K within the spectral range of 4.5 to 14 microns scene temperature within the 200 - 300 K range
 - Main contributors are radiance uncertainty of calibration targets and non-linearity of detector response
- <u>Calibration Sources (AE)</u>: Warm Blackbody, Ambient Blackbody, Zenith Sky view

© Copyright 2003 ABB Bomem Inc. Page 10

- Scan Angle Coverage (SAC): Selectable over a range from zenith (180°) to Horizontal (at either + or - 90°) to any combination of a set of viewing angle steps which together provide contiguous coverage over a range from ±50 degrees about Nadir (0°)
 - Defines the scene selection continuous pointing range of ±50 degrees plus 5 discrete pointing position
 - Requires scanning without FOV rotation

- <u>Lifetime</u>: \geq 10 years through parts replacement over time
 - Build the system with standard parts used in commercial standard products
 - Requires a single contractor responsible for the system
 - Contractor must have access to standard spare parts
- Design type: Modular to allow for detector, spatial and spectral resolution, and data system upgrades as technology matures throughout the lifetime of the NASTER
 - Use flexible electronics (digitally controlled interferometer)
 - Provide good transmission over a broad spectral range for the interferometer
 - Provide sufficient resolution capability

- <u>Operational Requirements</u>: Command Uplink/Data Downlink via over-the-horizon communications
- <u>Aircraft Compatibility</u>: ER-2 (20 km), Proteus (17 km), Global Hawk (20 km), and, if feasible, the new SCI space plane "Spaceship 1" (55 km)

Low pressure not seen as a problem with components used

Overview

- Review and comment the mid-IR requirements
- Presentation of ABB's current platform technology <</p>

- Proposed approach for mid-IR NASTER
- Proposed approach for initial NASTER
- Discussion

ABB's Current Platform Technology

- Current platform technology consists of cube-corner based interferometers
 - Provides low-cost, reliable, products 24/7 unattended operation
 - 4-port, <u>2-port</u>, and double-pass
 - Based on wishbone scan arm
 - Permanently aligned
- Flat mirror DA interferometers not used in commercial products
 - Porchswing scanning mechanism only supported for space qualified projects
 - Flat mirror interferometers are optically efficient for large imaging

ABB's Current Platform Technology

New BMXS electronics

- Digital scan servo control
 - Programmable scan profile
- Flexible IR sampling based on high density fringe sampling
 - Constant clock sampling with phase detection
 - Variable OPD sampling
- Ethernet, LVDS, 10/100 base
- Embedded Linux
- May support dynamic alignment

ABB's Current Platform Software

- FTSW100 software suite includes
 - Run time module
 - Continuous spectrometer operation
 - Continuous housekeeping logging and diagnostics using multiple I/O
 - CAN Bus and CAN Open
 - Control of measurement cycles
 - Configuration tools
 - Spectroscopy module
 - Radiometric functions
 - Chemometric functions
 - Database management
 - Propriatary SPC type files
 - Data can be exported to industry standard XML type

Overview

- Review and comment the mid-IR requirements
- Presentation of ABB's current platform technology
- Proposed approach for mid-IR NASTER
- Proposed approach for initial NASTER
- Discussion

Proposed Approach for Mid IR NASTER

- 2 Spectral Bands with band separation optics at 1750 cm⁻¹
- 2 imaging, fiber coupled, detector modules
- New COTS control electronics with Ethernet link
- Digitally controlled spectrometer
- Double pendulum, cube-corner, interferometer with good efficiency from 300 to 2860 cm⁻¹
- Selectable resolution with 0.075 cm⁻¹ as minimum spectral sampling
- ILS compatible with spectral sampling of 0.25 cm⁻¹ from 665 to 1750 cm⁻¹, and 0.5 cm⁻¹ from 1750 to 2860 cm⁻¹
- 250 meters IFOV at 20 km altitude
- 10 seconds per interferometer sweep for 2 km swath
- 34 mm \varnothing entrance pupil. f/1 optics at detector
- 8x8 FOR with contiguous coverage along-track
- Motion compensation pointing mirror
- 2 on-board calibration targets (Ambient and Hot)

Proposed Approach for Mid IR NASTER

Instrument Integration & Support		
Scene Selection Module	<u>Spectrometer</u>	
Telescope	 Interferometer with control 	
Pointing mirror with motion	electronics	
compensation	 Output optics 	
 Control electronics 	Detectors and readout electronics	
Calibration Targets		
1 ambient (passive) cavity	Instrument Control Electronics	
1 hot (active) cavity	 Data management 	
Temperature controller	 Dashboard (user interface) 	

© Copyright 2003 ABB Bomem Inc. Page 21

Mid IR NASTER - Resolution

Inverse telescope to reduce beam divergence inside interferometer

- Gold coated mirrors for pointing, telescope, and cube corners
- Csl beamsplitter
- PIR fiber to couple the interferometer to a PC-MCT linear array of 64 elements
- D* of 4x10¹⁰ jones for the LW and 8x10¹⁰ jones for the SW
- LW cut-off at 14.3 microns, SW cut-off at 5.7 microns
- 375 microns pixels (f/1 optics at the detector)
- 10 seconds observation time
- 2x2 pixel aggregation for 500 meters ground resolution
- Instrument temperature at 25°C
- SW is the middle portion of the full interferogram

- Detector noise limited
 - Second contributor is shot noise from self-emission

- LW cut-off at 18.2 microns to get the entire CO₂ absorption bands
- D* of 2x10¹⁰ jones for the LW
- Loss of performances in the water vapour bands from 1450 to 1750 cm⁻¹

 Decrease the resolution to 2.5 cm⁻¹ in the SW to meet requirement at 4.5 microns

Overview

- Review and comment the mid-IR requirements
- Presentation of ABB's current platform technology
- Proposed approach for mid-IR NASTER
- Proposed approach for initial NASTER
- Discussion

- 3 Spectral Bands (300 to 500 cm⁻¹, 500 to 1650 cm⁻¹, and 1650 to 2550 cm⁻¹)
- 3 detectors in 1 Stirling cooler (no band separation optics)
- New COTS control electronics with Ethernet link
- Digitally controlled spectrometer
- Selectable resolution with 0.075 cm⁻¹ as minimum spectral sampling
- ILS compatible with spectral sampling of 0.075 cm⁻¹ in the LW, 0.25 cm⁻¹ in the MW, and 2.5 cm⁻¹ in the SW
- 250 meters IFOV
- 1.25 second per interferometer sweep
- 34 mm \varnothing entrance pupil. f/1 optics at detector
- 1x8 FOR with contiguous coverage along-track
- +/- 34 degrees cross track scans with motion compensation

2 on-board calibration targets (Ambient and Hot)

Resolution

- D* = 4×10⁹ (LW), 4×10¹⁰ (MW), and 1×10¹¹ (SW) jones
- MW and SW are middle portions of full resolution interferogram

• 1 sweep, IFOV's aggregation to 500 meters square

3 sweeps, IFOV's aggregation to 500 meters square

Summary for Initial NASTER

	Desired	Proposed
Range	100 – 2500 cm ⁻¹	$300 - 2500 \text{ cm}^{-1}$
Resolution	0.025 cm ⁻¹	$0.075 \text{ cm}^{-1} < 500 \text{ cm}^{-1}$ $0.25 \text{ cm}^{-1} < 1650 \text{ cm}^{-1}$ $2.5 \text{ cm}^{-1} < 2500 \text{ cm}^{-1}$
Ground resolution	500 m x 500 m	250 m x 250 m
FOR		2km
Observation time		aggregate to 4x1
Cross-track	2 – 20 km	$2 - 20 \text{ km} (0.825 \text{ cm}^{-1})$
NedT (260 K)	0.2 – 1 K	$1.2 \text{ K} < 500 \text{ cm}^{-1}$ $0.05 - 1 \text{ K} < 1650 \text{ cm}^{-1}$ $0.7 - 2.5 \text{ K} < 2500 \text{ cm}^{-1}$

© Copyright 2003 ABB Bomem Inc. Page 34

MR type (AERI) interferometers with higher resolution and larger aperture considered in other airborne and space programs

SOFIS FTS On-board GCOM-A1

© Copyright 2003 ABB Bomem Inc. Page 36

Overview

- Review and comment the mid-IR requirements
- Presentation of ABB's current platform technology
- Proposed approach for mid-IR NASTER
- Proposed approach for initial NASTER
- Discussion

