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The National Polar-Orbiting Operational Environmental Satellite System �NPOESS� Airborne Sounder
Testbed �NAST� consists of two passive collocated cross-track scanning instruments, an infrared inter-
ferometer �NAST-I� and a microwave radiometer �NAST-M�, that fly onboard high-altitude aircraft such
as the NASA ER-2 at an altitude near 20 km. NAST-I provides relatively high spectral resolution
�0.25-cm�1� measurements in the 645–2700-cm�1 spectral region with moderate spatial resolution �a
linear resolution equal to 13% of the aircraft altitude at nadir� cross-track scanning. We report the
methodology for retrieval of atmospheric temperature and composition profiles from NAST-I radiance
spectra. The profiles were determined by use of a statistical eigenvector regression algorithm and
improved, as needed, by use of a nonlinear physical retrieval algorithm. Several field campaigns
conducted under varied meteorological conditions have provided the data needed to verify the accuracy
of the spectral radiance, the retrieval algorithm, and the scanning capabilities of this instrumentation.
Retrieval examples are presented to demonstrate the ability to reveal fine-scale horizontal features with
relatively high vertical resolution. © 2002 Optical Society of America

OCIS codes: 010.0010, 010.1280, 280.0280.
1. Introduction

Temperature and water vapor are basic meteorolog-
ical parameters for weather forecasting. In addi-
tion, they are critical parameters in tropospheric
chemistry studies. Observation from an infrared
Fourier transform spectrometer �FTS� flown on an
aircraft, or a spacecraft, can be used to infer the
atmospheric temperature, moisture, and the concen-
tration of other chemical species by use of radiative
transfer equation inversion techniques.1–3 The Na-
tional Polar-Orbiting Operational Environmental
Satellite System �NPOESS� Airborne Sounder Test-
bed �NAST� has been successfully operating on high-
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altitude aircraft �ER-2 and Proteus� since 1998.4,5

NAST-I was designed to provide radiometric mea-
surements similar to those to be obtained from future
satellite sensors such as the Atmospheric Infrared
Sounder �AIRS� on the Aqua �2002�, the Geosynchro-
nous Imaging Fourier Transform Spectrometer
�GIFTS� on the EO-3 �2005�, the Interferometer At-
mospheric Sounding Instrument �IASI� on the Mete-
orological Operational �METOP� �2005�, and the
Cross-track Infrared Sounder �CrIS� on the NPP
�2006� and the NPOESS �2008� satellites.

A fast and accurate inversion algorithm becomes
critical when one deals with high-spatial and hyper-
spectral resolution remote-sounding data. Detailed
and accurate analyses of NAST-I data, by use of lin-
ear regression of radiance eigenvector amplitudes
against atmospheric state variables2 with an accu-
rate fast transmittance model6,7 and NAST-I mea-
surements, have demonstrated that fast and accurate
retrieval of temperature and moisture profiles can be
achieved.8 An ozone regression retrieval, achieved
simultaneously with temperature and moisture, has
also been performed.9 The same regression method-
ology has been applied to NAST-I and NAST-M data
in combination, thereby providing an all-weather
sounding capability. NAST-I has provided hyper-
spectral resolution remote-sensing data, which pro-
vides independent validation, from many field
0 November 2002 � Vol. 41, No. 33 � APPLIED OPTICS 6957



campaigns. Samples of NAST-I geophysical prod-
ucts �e.g., distributions of temperature, moisture,
surface skin temperature� obtained during these val-
idation campaigns are presented herein, along with a
description of the profile retrieval methodology �re-
gression and physical iteration� that was used to
achieve the results.

2. Experiments and Observations

NAST-I instrumentation, measurements, calibra-
tion, and radiance validation are documented else-
where.4,10,11 NAST-I measured radiance spectra
cover CO2 emission within the 15- and 4.3-�m bands,
H2O emission across the 6.3-�m band, O3 emission
within the 9.6- and 4.7-�m bands, and CO emission
within the 4.6-�m band. These radiance measure-
ments can be used to retrieve temperature, water
vapor, ozone, and carbon monoxide profiles. Even
though a large amount of data have been collected
since July 1998 under a variety of meteorological
conditions, results from only a limited data set are
needed and presented in this paper for the purpose of
retrieval algorithm validation. A more complete
overview of results from the numerous field cam-
paigns in which the NAST has collected data is in
preparation. Retrievals from the Convection and
Moisture Experiment 3 �CAMEX-3� Atlantic basin
tropical cyclone field validation NASA ER-2 flight
�during local nighttime, 13–14 September 1998� over
Andros Island, Bahamas, are presented here.
These, together with the radiosonde and ground-
based remote-sensing observations �e.g., Raman li-
dar� made from Andros Island, provide a unique data
set for detailed analysis of retrieval resolution and
accuracy. During this particular calibration–
validation flight, water vapor measurements were
also provided by the Lidar Atmospheric Sensing Ex-
periment �LASE� onboard the NASA DC-8 aircraft12

flow below the NASA ER-2 aircraft. All coincident
observations obtained during this experiment are
used to understand the atmospheric state for validat-
ing NAST-I retrievals of temperature and water va-
por.

The retrievals obtained from cloudy regions will
contain intolerable error near and below the cloud
level if the attenuation of infrared radiation emitted
from the Earth’s surface and the atmosphere below
the cloud are not properly accounted for in the re-
trieval process. Cloud-cleared radiances13 in cloudy
regions were used for the analyses and retrieval pro-
cessing presented in this paper. NAST-I measured
radiances were classified as either clear or nonclear
as described in the following empirical manner.
NAST-I measurements were classified as clear if the
following three criteria were met: �T11 � T10� � 2 K,
�T12 � T11� � 2 K, and Tw � 294 K, where T10, T11,
T12, and Tw are the brightness temperatures at 10-,
11-, and 12-, and the window region �893.7–903.8
cm�1�, respectively; otherwise, the measurement was
classified as nonclear. Each of the nonclear mea-
surements was cloud cleared by the methodology ini-
tially presented by Smith.14 This method assumes

that the only difference in the measured radiance
between adjacent measurements is the amount of
cloud cover in each of the scenes. Using pairs of
adjacent measurements, at least one of which is a
cloudy measurement and a simultaneous clear mea-
surement in a spectral window region, we could cal-
culate estimates of the clear column radiance for
measurements made over cloudy regions. It is as-
sumed that the surface radiance as observed in the
window spectral channel is also representative of
clouded columns, a good assumption over oceanic re-
gions. Detailed studies of cloud-clearing accuracy
versus field-of-view size performed by use of NAST-I
data reveal rapid degradation with an increase in
field-of-view size.13 The fact that NAST-I measure-
ments have moderate spatial resolution and broad
infrared regional coverage allows cloud clearing to be
performed with a highly achievable degree of accu-
racy when applied at the full spatial resolution of the
NAST interferometer.

3. Linear Regression Methodology and Analyses

Atmospheric temperature, moisture, and surface
property retrieval from near-nadir-viewing spectral
radiances is accomplished in two steps: �1� regres-
sion retrieval obtained by use of a linear statistical
regression of radiance eigenvector amplitudes
against atmospheric state parameters based on a his-
torical radiosonde training database and �2� physical
retrieval achieved by use of the eigenvector regres-
sion results as the first guess by iteration of the ra-
diative transfer calculations to achieve a solution
that best fits the radiance observations. Since the
retrieval problem described is ill-posed, additional
information is needed to constrain the solution.
Here, radiosonde sample statistics constrain the re-
gression algorithm and the results can be used as the
initial or first-guess profile to constrain the physical
retrieval. The linear statistical eigenvector regres-
sion retrieval provides first-guess profiles and surface
properties that minimize the number of iterations
and computation time required for physical retrieval
processing.

A. Linear Statistical Regression

The basic linear statistical regression theory is now
summarized. Given a set of historical radiosonde
measurements and associated simulated spectral ra-
diance R, the relationship between an atmospheric
state and associated radiances is expressed statisti-
cally in terms of regression coefficients. R is calcu-
lated from the radiosonde atmospheric state and
assumed surface properties A�T, Q, Ts, εs�, where T is
the temperature profile, Q is the water vapor profile,
Ts is the surface temperature, and εs is the surface
emissivity. The surface emissivity spectrum for
each radiosonde profile is randomly selected from a
set of laboratory measured emissivity spectra for a
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wide variety of surface types.15 Using amplitudes of
statistical eigenvectors of radiance as the predictors
filters the radiance noise and effectively stabilizes the
retrieval.2 Eigenvectors E �i.e., empirical orthogo-
nal functions, �EOFs�� can be generated by use of the
covariance matrix M from a set of radiances associ-
ated with a radiosonde training data set �total num-
ber of S profiles and number of selected spectral
channels denoted by nc�. This covariance matrix is
expressed as

Mij �
1
S �

k�1

S

�ki�kj, (1)

where �kj is the radiance �deviation from the sample
mean� at spectral position j of sample k. We define
the eigenvector matrix U by resorting to the singular-
value decomposition of covariance matrix M. The
eigenvectors that comprise matrix U in Eq. �1� are
ordered from the largest amount of variance to the
residual variance in successively decreasing order.
The elements of the radiance eigenvector amplitude
vector C �i.e., the radiance predictor in the eigenvec-
tor domain� is given by

Ci � �
j�1

nc

�jUji. (2)

The statistical regression coefficient matrix K derived
from a set of radiosonde observations provides the
matrix relationship between the surface and the at-
mospheric variables A, and associated radiance vec-
tor � and surface pressure Ps:

Aj � �
i�1

n�1

KjiCi � KjnPs

� �
i�1

n�1

Kji��
l�1

nc

�l Uli� � KjnPs, (3)

where n is the number of EOFs �i.e., the number of
principal components used for the regression retriev-
al�. The surface emissivity can also be retrieved by
prediction of the amplitudes of a small set of emis-
sivity eigenvectors used to represent the laboratory
sample of emissivity spectra utilized for the radiance
simulations.16

NAST-I contains a scanning mirror that allows the
viewing angle to vary from �45 to 	45 deg with a
step of 7.5 deg in the cross-track direction. The ze-
nith angle is associated with the viewing angle and
aircraft roll angle at each NAST-I scan position.
The regression coefficients are derived for a fixed set
of zenith angles while the retrieval for a specific ze-
nith angle of a scan is obtained by linear interpolation
of the two retrievals obtained by use of regression
coefficients for the two closest zenith angles. Re-
gression coefficients are defined for as many angles as
necessary to account correctly for radiance depen-
dence on zenith angle in the retrieval process.

B. Training Data, Analyses Approach, and Optimal
Regression

The analyses presented here use the case from
CAMEX-3 described in Section 2. The CAMEX-3
radiosonde training profiles were taken from August
to September 1997. Radiosonde station latitudes
were from 17 °N to 40 °N and longitudes were from
75 °W to 94 °W for a total of 29 stations and 3188
radiosondes. We synthetically produced the associ-
ated ozone profiles using the regression statistics de-
rived from the NASA Wallops Flight Facility �WFF�
ozonesonde database collected between July 1995
and March 2000.17

NAST-I possesses three spectral bands that to-
gether provide 8632 spectral channels. To limit the
size of EOFs that accommodate the computer mem-
ory requirements for EOF computation, we chose
spectral segments to contain channels that provide
the most information about temperature, water va-
por, ozone, carbon monoxide, and surface properties
as required for accurate regression statistics. These
spectral segments were selected on the basis of the
retrieval sensitivity to the spectral radiances, which
is illustrated by the weighting function �or Jacobian�
matrix. Weighting functions can be calculated by an
analytical scheme or a numerical perturbation meth-
od.18,19 Examples shown in Fig. 1 are the weighting
function matrices for gases of constant mixing ratios
�e.g., CO2 and N2O� and for water vapor �H2O� sim-
ulated for NAST-I by use of the U.S. 1976 Standard
Atmosphere. It is noted that the weighting func-
tions associated with constant mixing ratio gases and
water vapor have peaks distributed throughout the
range of pressure altitude. In other words, the
channels in these spectral regions can be used for
temperature and water vapor profile retrieval.
These weighting functions are also used to select the
channels for the physical retrieval to be discussed in

Fig. 1. Weighting function matrices of �a� fixed gas �constant
mixing ratio� and �b� water vapor of NAST-I channels calculated
with the U.S. 1976 Standard Atmosphere. The peak �or valley� of
the weighting function of fixed gas �or water vapor� of each channel
indicated in wave number is associated with a pressure altitude.
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Section 4. The selected spectral segments for re-
gression analyses and retrieval are indicated in Fig.
2�a� �black regions�, which also shows a simulated
NAST-I spectrum �from the ER-2 altitude of 
20 km�
and a spectrum of instrument noise. NAST-I spec-
tral channels totaling 4514 were selected and used in
the regression retrieval analysis.

Fundamental questions must be considered to
achieve the optimal regression solution. �1� How
many principal components �i.e., EOFs� are appropri-
ate to produce the optimal regression retrieval? �2�
How does the noise �i.e., instrument noise and for-
ward model error� affect the optimal number of
EOFs? Two methods are investigated to estimate
the optimal number of EOFs for retrieval: �1� a
model simulation method with the knowledge of
NAST-I noise level and �2� a NAST-I measured and
retrieval-simulated radiance fitting method per-
formed without knowledge of the measurement noise
level. Both methods define the optimal number of
EOFs for processing the NAST-I measurements.

The advantage of radiative transfer model simula-
tion of NAST-I observed radiances is that the truth
profile �i.e., the radiosonde observation� is known and
the retrieval can be directly compared with the truth
to define an optimal EOF number. However, this
approach requires an accurate representation of the
total system noise level. The standard deviations of
the regression error �STDE� differences between the
truth and the retrieval for the dependent sample �the
training database for the CAMEX-3 data set� are
shown in Figs. 3�a� and 3�b� for temperature and
water vapor, respectively. The vertical mean of the
STDE is also shown in Figs. 4�a� and 4�b�. From this
typical case, the optimal EOF number �associated
with minimal error� for simultaneous temperature
and water vapor retrieval can be defined if the total
noise is the NAST-I radiometric noise observed dur-
ing calibration of the instrument. The same analy-
sis has been conducted with the noise reduced by 50%

to illustrate how an optimal EOF number and re-
trieval accuracy are affected by the instrument noise
level. The optimal number of EOFs, as expected, is
increased and the retrieval error is reduced �see Figs.
4�a� and 4�b��. This indicates the importance of
specifying the noise accurately since the retrieval ac-
curacy depends on the optimal EOF number. Sim-
ilar results are obtained from an independent sample
of radiosonde cases.

The least-squares fitting of retrieval-simulated ra-
diances to actual radiance observations is used to
define the optimal EOF number that accounts for
forward model error as well as the actual measure-
ment noise. A set of observed spectral radiances
�under cloud-free conditions� and spectral radiances
simulated from the associated retrievals can be com-

Fig. 2. �a� Simulated NAST-I spectral radiance from the radio-
sonde collected on Andros Island, Bahamas �24.7 °N, 77.8 °W� at
00:30 UTC, 14 September 1998. The channels indicated in black
were selected for regression analyses and retrieval. �b� Estimated
NAST-I random noise level for this flight as obtained from calibra-
tion blackbody looks.

Fig. 3. STDE over dependent samples �CAMEX-3 training data
set� as a function of the number of EOFs for �a� temperature and
�b� water vapor assuming NAST-I calibration noise �EOF numbers
of 10, 26, and 58 are indicated by dash–dot, solid, and dashed
curves, respectively�.

Fig. 4. Mean of profile STDE for �a� temperature and �b� water
vapor shown as solid �full NAST-I calibration noise� and dashed
curves �half NAST-I calibration noise�.

6960 APPLIED OPTICS � Vol. 41, No. 33 � 20 November 2002



pared to find the minimum standard deviation of the
differences through the spectral radiance domain
that corresponds to the EOF number. NAST-I data
collected over Andros Island �13–14 September 1998�
within the latitudes of 24.6° and 24.8 °N, the longi-
tudes of 77.7° and 77.9 °W, and viewing angles of less
than 20° �a total of 118 single scans� were used to
define the optimal EOF number. These observa-
tions were selected near the radiosonde site for
retrieval validation purposes. The standard devia-
tions of the spectral radiance differences between ob-
servations and simulations from retrievals associated
with the same observations are shown in Fig. 5 as a
function of the number of EOFs �only two curves are
plotted in Fig. 5�b� for clarity�. The optimal EOF
number is defined as the number that provides the
best fit of the calculated radiance spectrum to the
observed radiance spectrum; this is achieved without
a priori knowledge of a specific noise level.

In this case, we derived the comparable optimal
EOF number by using two approaches �i.e., 26 from
the simulation method and 23 from the observation
method�, revealing that accurate noise estimation is
obtained from the calibration data. However, the
forward model error was not accounted for in the
model simulation method �Figs. 3 and 4�; therefore,
the optimal EOF number derived from observations
is expected to be smaller than that defined as pure
simulation analyses. When the number of EOFs is
larger �or smaller� than the optimal, the effect of
noise is not optimally minimized �or part of the at-
mospheric content is filtered out and the vertical res-
olution is reduced�. It is clear that an accurate
regression depends on an optimal EOF number that
will minimize the effect of noise and produce optimal
sensitivity. It is noteworthy that the optimal num-
ber of EOFs also depends on the training data set and

the channel selection. An optimal number of EOFs
can be determined by one of the two methods illus-
trated above. The optimal EOF number minimizes
the retrieval error and optimizes the vertical resolu-
tion achievable for the noise level. Field campaigns
with varied meteorological conditions have provided
the data needed to verify the accuracy of NAST-I
spectral radiance, including the forward model, the
retrieval algorithm, and the capabilities of this in-
strument. These same analyses have been per-
formed over many different training data sets for
varied meteorological conditions, leading us to con-
clude that NAST-I optimal regression achieves an
accuracy for a temperature of 
1.0 deg rms and wa-
ter vapor of 
20% rms for 1- and 2-km layers, respec-
tively.

C. Regression Validation

NAST-I has successfully collected high-quality data
throughout many field campaigns. A sample of re-
gression retrievals is presented here to demonstrate
the nadir temperature and water vapor profiling re-
gression. There were five radiosondes launched
during the period from 22:30 UTC, 13 September, to
02:40 UTC, 14 September 1998 from the same loca-
tion of latitude 24.7 °N and longitude 77.8 °W �An-
dros Island, Bahamas�. NAST was onboard the
ER-2 and flown over the radiosonde site to provide
the data needed for NAST-I retrieval algorithm val-
idation. Two sets of regression retrievals, resulting
from the 26 and the 23 EOFs, are presented here for
comparison. The mean of these radiosondes was
plotted in Figs. 6�e� �temperature� and 6�f � �relative
humidity� for comparison with the spatially averaged
NAST-I temperature �Figs. 6�a� and 6�b�� and relative
humidity �Figs. 6�c� and 6�d�� retrievals, respectively.
The segment for which the spatial averaging is per-
formed is closest in time and location to the radio-
sonde observation. It is noteworthy that this
retrieval depends solely on the observed radiances
�i.e., there was no tuning based on radiosonde data�
and is within the accuracy expectation. The atmo-
spheric state was retrieved to simulate NAST-I spec-
tral radiances, which were then compared with the
associated NAST-I observed radiances to illustrate
the accuracy of this regression. This spectral radi-
ance validation has shown minimized discrepancy
similar to the results �with 26 EOFs� in Fig. 5.

4. Physical Retrieval Algorithm

NAST-I has 8632 spectral channels to provide abun-
dant information on atmospheric parameters; even
though many channels are redundant in spectral in-
formation, they are independent in terms of random
measurement noise. Thus, as many channels as
possible should be used for the statistical retrieval
processing but a subset of optimal channels was se-
lected for subsequent physical retrieval. The opti-
mal channels for which the spectroscopy is well
known should provide nonredundant information for
both temperature and atmospheric constituents; in
addition, they are those that have small detector

Fig. 5. Standard deviation of radiance difference between ob-
served and retrieval simulated �see text� as a function of the num-
ber of EOFs: �a� band sample mean �note: band 1 �645–1300
cm�1�, band 2 �1290–1999 cm�1�, band 3 �1985–2700 cm�1� are
multiplied by 1, 2, and 5, respectively� and �b� spectral distribution.
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noise and a small calibration error. These channels
are desired in-between line centers, since here the
sharpest weighting functions occur. To use the
same eigenvectors used in the regression processing
to reconstruct �i.e., to reduce the noise of � NAST-I
radiances for physical retrieval, these optimal chan-
nels are selected in the same spectral regions �indi-
cated in Fig. 2� used for the regression retrieval.
The selected optimal channels for physical retrieval
are shown in Fig. 7 along with a NAST-I brightness
temperature spectrum.

Once the first guess is generated from the regres-
sion technique described above, a nonlinear iterative

procedure is set up to produce a retrieval that is an
improvement of the first guess �i.e., the regression
retrieval�. Here, the upwelling spectral radiances
are represented by the radiative transfer equation
�excluding any scattering and reflection�:

R � Rs � εBs�s � �
Pac

Ps

Bd� � �1 � ε� �
Pac

Ps

Bd�*, (4)

where �* � �s
2��; R is the spectral radiance at a

certain frequency; Rs represents the contribution of
reflected solar radiation in the infrared region and
can be eliminated for channels with a wavelength
longer than 4.0 �m in daytime, ε refers to the Earth’s
surface emissivity; B�, T�p�� is the Planck function
at wave number  and at temperature T�p�; p is the
pressure; � is the atmospheric transmittance from
any given level to the top of the atmosphere �or the
sensor�; Pac is the aircraft pressure; and Ps is the
surface pressure �subscript s denoting surface�. A
fast model6,7 with vertical pressure coordinates from
50 to 1100 hPa �or millibars� is used for the NAST-I
transmittance calculation. The pressure grid is es-
tablished according to p�i� � �a � i2 	 b � i 	 c�7�2,
where we determined parameters a, b, and c by solv-
ing the equation of p�1� � 1100 mbars, p�38� � 300
mbars, and p�101� � 5 � 10�3 mbars.

If the NAST-I observed radiance R
m of each chan-

nel is known, then R
m can be considered a nonlinear

function of the atmospheric temperature profile, wa-
ter vapor mixing ratio profile, ozone mixing ratio pro-
file, surface skin temperature, surface emissivity, etc.
That is, R

m � R�T, Q, Ts, ε, . . .� 	 � �� is the
instrument noise and other sources of error�. In
general,

Ym � Y�X� � �, (5)

where the state vector X contains atmospheric tem-
peratures �L levels of atmosphere�, atmospheric
moisture mixing ratios �the moisture is expressed as
the logarithm of the mixing ratio in practical appli-
cations�, one surface skin temperature, etc. and Ym

contains N �number of channels used� observed radi-
ances. The linear form of Eq. �5� is

�Y � Y��X, (6)

where Y� is the linear tangent of the forward model Y,
the weighting function �or Jacobian� matrix. These
weighting functions can be calculated by a differen-
tial scheme or perturbation method. However, an
accurate and efficient analytical way to calculate the
weighting functions is important for real-time ad-
vanced sounder data retrieval processing. Here the
linear model Y� uses an efficient analytical form.18,20

A general form of the minimum variance solution
minimizes the following penalty function21:

J�X� � �Ym � Y�X��TE�1�Ym � Y�X��

� �X � X0�
TH�X � X0�, (7)

Fig. 6. Sample of NAST-I regression and radiosonde comparison
from CAMEX-3 validation flight over Andros Island, Bahamas, 14
September 1998. Radiosonde profile �black� and NAST-I means
from 26 �blue� and 23 �red� EOF regressions plotted in �a� and �b�
for temperature and relative humidity, respectively. The cross
sections of temperature and relative humidity resulting from 26
and 23 EOF regressions are shown. The ER-2 flew over the ra-
diosonde site at 
1.82 UTC. The aircraft location �latitude and
longitude� associated with UTC is indicated in Fig. 12.

Fig. 7. NAST-I brightness temperatures and selected optimal
channel index �in dots� used in the physical retrieval processing.
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where superscript T denotes the transpose. By us-
ing the Newtonian iteration,

Xn	1 � Xn � J��Xn�
�1J��Xn�, (8)

the following quasi-nonlinear iterative form22 is ob-
tained:

�Xn	1 � �Y�n
TE�1Y�n � H��1Y�n

TE�1��Yn � Y�n�Xn�,

(9)

where �Xn � Xn � X0, �Yn � Ym � Y�Xn�, X is the
atmospheric profile to be retrieved, X0 is the initial
state of the atmospheric profile or the first guess, Ym

is the vector of the observed radiances or brightness
temperatures used in the retrieval process, E is the
observation error covariance matrix that includes in-
strument noise and forward model error, and H is the
a priori matrix that constrains the solution. H can
be the inverse of the a priori first-guess error covari-
ance matrix or another type of matrix. If the statis-
tics of both the measurement and a priori error
covariance matrix are Gaussian, then the maximum-
likelihood solution is obtained. However, if the a
priori error covariance matrix is not known or is es-
timated incorrectly, the solution will be suboptimal.7
Here we let H � �I in Eq. �9�, where � is a Lagrangian
multiplier that serves as a smoothing factor. Equa-
tion �9� becomes

�Xn	1 � �Y�n
TE�1Y�n � �I��1Y�n

TE�1��Yn � Y�n�Xn�,

(10)

which is commonly referred to as the minimum in-
formation solution. The smoothing factor � is diffi-
cult to determine but extremely important to the
solution. It is noted that � is dependent on the ob-
servations, the observation error, and the first guess
of the atmospheric profile; often it is chosen
empirically.23–25 The solution can be overcon-
strained and large biases can be created in the re-
trieval when � is too large. The solution can be
underconstrained and possibly unstable when � is too
small. In the NAST-I retrieval procedure, the dis-
crepancy principle26–28 is applied to determine the
appropriate smoothing factor �. Thus

�Y�X���� � Ym�2 � �2, (11)

where �2 � ¥k�1
N ek

2, ek is the square root of the
diagonal of E or the observation error of channel k,
which includes instrument error �e.g., Fig. 2�b�� and
forward model error �that is, ek

2 � �k
2 	 fk

2, where �k
is the instrument noise of channel k, whereas fk is the
forward model error that is assumed to be 0.5 K for
the same channel�. Usually �2 can be estimated
from the instrument noise and the validation of the
atmospheric transmittance model used in the re-
trieval. Since Eq. �11� has a unique solution for �,26

the atmospheric parameters and the smoothing fac-
tor can be determined simultaneously. In NAST-I
retrieval processing, a simple numerical approach is

adopted for solving Eq. �11�; � is changed in each
iteration according to

�n	1 � qn�n, (12)

where q is a factor for � increasing or decreasing.
Based on Eq. �11�, q is obtained in each iteration by
satisfying the following conditions:

q0 � 1.0;

if �Y�Xn� � Ym� � �2, then qn � 1.5;

if �Y�Xn� � Ym� � �2, then stop the iteration;

if �Y�Xn� � Ym� � �2, then qn � 0.5.

The q factor has been found from empirical expe-
rience to ensure that the solution is stable between
iterations. Thus, � continues to change until the
iteration stops.

In the retrieval processing, several checks are
made for retrieval quality control. The rms of quan-
tity �Y�Xi� � Ym� from all selected channels �i is
computed to check the convergence �or divergence�.
If �i	1 � �i within two iterations �i.e., iteration di-
verges�, then the iteration is stopped and the re-
trieval is set to the first guess �or the previous
atmospheric state�; otherwise, iteration continues
until �n � 1.0 K and ��n � �n�1� � 0.01 K, or a
maximum of ten iterations is reached. The degree of
convergence of each iteration depends on the accu-
racy of the previous atmospheric and surface state.
In addition, at each iteration, each level of the water
vapor profile is checked for supersaturation. A
unity magnitude of relative humidity is assumed at
any supersaturated level.

5. Results, Validation, and Discussion

This physical retrieval algorithm is tested through
simulations and then applied to actual NAST-I
measurements. The achievement of convergence
through iteration has been shown in most cases, ver-
ifying the integrity of the algorithm. To demon-
strate how this physical iteration is performed, one
single scan of NAST-I measurements from the 13–14
September 1998 experiment is used here as an ex-
ample. Figure 8�a� shows the brightness tempera-
ture difference between the NAST-I observed and
retrieval simulation. The open circles are from re-
gression retrievals �by use of 26 EOFs� and the dots
are from physical retrievals. The brightness tem-
perature differences for these optimal channels are
minimized through the physical retrieval solution.
The associated temperature and moisture profile dif-
ferences are plotted in Figs. 8�b� and 8�c�, respec-
tively, and show that the physical retrieval affects the
final water vapor profile result more significantly
than the final temperature profile result.

The same data as used for linear regression anal-
ysis are used here in physical retrieval processing to
compare the first guess �i.e., the EOF regression re-
trieval� and the final physical retrieval. The same
data set shown in Fig. 6 is again shown in Fig. 9 after
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physical retrieval processing for comparison with the
first guess for a relatively large section of the vertical
cross sections of temperature and moisture. The fi-
nal retrievals by use of the first guess of 26 and 23
EOF regressions and indication that the difference

between these two sets of retrievals is significantly
minimized after the physical processing in compari-
son with the initial regressions shown in Fig. 6 are
shown in Fig. 9. The difference between the regres-
sion and the physical retrieval, or Fig. 6 and Fig. 9, is
shown in Fig. 10. The degree of excellence for the
regression retrieval is also apparent from the fact
that the physical iterative retrieval did not alter it
significantly when used as the first guess. In most
cases, the regression retrieval is only slightly modi-
fied after the physical retrieval processing. A signif-
icantly large amount of computation time is required
by this physical retrieval even though the first guess
is close to the conclusion. The difference in the re-
gression retrieval and the physical retrieval of this
data set, shown in Fig. 10, indicates that the dissim-
ilarities are small except for those of water vapor
within narrow layers under certain circumstances.
Thus, for atmospheres represented by this case, the
physical retrieval is unnecessary if fast productions
are required. However, a significant difference be-
tween the statistical regression retrieval and the
physical iteration retrieval could occur when the
training data set used to generate the regression co-
efficients does not statistically represent the mea-
sured atmospheric state; the final retrieval is
improved through physical iterations of radiative
transfer computation comparison.

Comparison of both the water vapor mixing ratio
and relative humidity between the LASE and the
NAST-I final physical retrieval are shown in Fig.
11. The LASE relative humidity is computed from
the LASE mixing ratio by use of coincident NAST-I
temperatures. The higher vertical resolution wa-
ter vapor mixing ratios measured by the active re-
mote sensor LASE onboard the DC-8 were taken
almost at the same time and at the same location as
the NAST-I measurements. The discrepancy is
due to different vertical resolutions �approximately

Fig. 8. Convergence example from physical iteration shows that
�a� the absolute difference of brightness temperature between ob-
served and retrieval simulations is minimized from the first guess
�open circles, 26 EOF regression� to the final �physical retrieval,
dots�. The differences between �b� temperature and �c� moisture
profiles associated with �a� radiance adjustment are indicated.

Fig. 9. Similar to Fig. 6 but physical retrievals that use regres-
sion as a first guess. Radiosonde profile �black� and NAST-I mean
of physical retrievals by use of 26 �blue� and 23 �red� EOF regres-
sions as first guesses plotted in �a� and �b� for temperature and
relative humidity, respectively. Shown are the cross sections of
temperature and relative humidity that resulted by use of 26 and
23 EOF regressions as first guesses �see text�.

Fig. 10. Differences of �a� temperature and �c� relative humidity
vertical cross sections between the physical retrieval �Figs. 9�c� and
9�e�� and the 26 EOF regression retrievals �Figs. 6�c� and 6�e��.
Differences of �b� temperature and �d� relative humidity vertical
cross sections between the physical retrieval �Figs. 9�d� and 9�f ��
and the 23 EOF regression retrievals �Figs. 6�d� and 6�f ��.
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1 km for NAST-I and 0.33 km for LASE� and within
expected error sources �e.g., NAST-I measurement
and retrieval uncertainty�. In addition, the mean
water vapor profile from the ground observation of
Raman lidar during this period is also plotted; the
relative humidity is computed by use of radiosonde
temperatures. Overall, good agreement between
these sensors is illustrated, which validates the ac-
curacy of NAST-I measurements and the retrieval
algorithm.

This same data set is also displayed for horizontal
levels showing that fine-scale horizontal features
are retrievable from the NAST-I radiance observa-
tions. The skin temperature distribution, shown
in Fig. 12�a� and for the time associated with the
vertical distribution of Fig. 6 �or Fig. 9�, indicates
relatively warmer water skin temperature than
land �island� skin temperature as expected for the
local night observation time. The emissivity at the
8.6-�m region only varies approximately 2.0% as
shown in Fig. 12�b�. Samples of NAST-I geophysi-
cal products, horizontal distributions of tempera-
ture and relative humidity shown in Fig. 12�c� �or at
any pressure level�, together with the vertical dis-
tribution �Fig. 9� from nadir observations �or at any
other viewing angle� along the flight track, clearly
reveal the atmospheric state three dimensionality.

6. Summary

The algorithm used for temperature and moisture
retrieval from NAST-I radiance observations has

been developed, validated, and demonstrated. De-
tailed statistical regression analyses were performed
to better understand the effects of noise in the spec-
tral radiance on retrieval accuracy, and thus in the
selection of an optimal EOF number for a statistical
regression retrieval process. An optimal number of
EOFs can be determined by retrieval simulation with
an accurate estimate of instrument noise. This can
also be determined by minimization of the difference
between observed radiance spectra and radiance
spectra calculated from the retrievals of radiance ob-
servations. This latter method does not require a
priori knowledge of the instrument and forward
model noise level. The optimal EOF number deter-
mines the retrieval error and the vertical resolution
associated with the noise level.

A nonlinear physical iteration retrieval algorithm
has also been developed, validated, and demon-
strated. The result of physical iteration is used to
validate the accuracy of the regression retrieval used
as a first guess. The analyses and retrievals from
many field campaigns with varied meteorological

Fig. 11. Water vapor mixing ratio and relative humidity compar-
isons between NAST-I and LASE. �a� Mean profiles were pro-
duced from �c� NAST-I data �red� and �d� LASE data �blue�,
respectively, and the means in �b� were produced from �e� NAST-I
data �red� and �f � LASE data �blue�, respectively. In addition, the
radiosonde �black� and Raman lidar �green� are also plotted for
comparison �see text�.

Fig. 12. Same data set as shown in Fig. 6 displayed in select
horizontal levels: �a� skin temperature, �b� surface emissivity, �c�
relative humidity at 500 mbars �see text�.
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conditions �not presented here� illustrate the integ-
rity of this retrieval approach. Retrieval samples of
geophysical products from 13–14 September 1998 are
presented here to demonstrate the capability of the
NAST-I sensor to provide local mesoscale Earth sci-
ence observations. The results demonstrate that ac-
curate retrievals can be achieved without resorting to
radiosonde tuning �i.e., radiance bias correction�, an
important feature of state-of-the-art remote sensing
for near-nadir-viewing observation systems.
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