GIFTS-IOMI Clear Sky Forward Model

Status

- Line-by-line Model
- Fast Model
- Future Plans
 - Line-by-line Model
 - Fast Model

Presented by David Tobin MURI Workshop, 27-28 May 2003, UW-Madison

Definition of terms:

Input parameters :
$$X = p, T, w, o$$

Forward (Radiance) model : $R = f(p, T, w, A), \quad A = g(p, w, o)$
Tangent Linear (TL) model : $dR = \frac{\partial f}{\partial p} dp + \frac{\partial f}{\partial T} dT + \frac{\partial f}{\partial w} dw + \frac{\partial f}{\partial A} dA$
Adjoints (transpose of TL model) : $d^* p = \frac{\partial f}{\partial p} d^* R, \quad d^* T = \frac{\partial f}{\partial T} d^* R$ etc ...
Jacobian : $\frac{\partial R_n}{\partial X_i}$

Monochromatic absorption and radiative transfer algorithms:

- LBLRTM: Line-by-line Radiative Transfer Model
- kCARTA: k Compressed Atmospheric Radiative Transfer Algorithm

Fast Model Approaches:

- PLOD: Pressure Layer Optical Depth
- OPTRAN: Optical Path Transmittance algorithm
- OSS: Optimal Spectral Sampling

Water vapor absorption modeling

GIFTS-IOMI Clear Sky Forward Model

• Status

- Line-by-line Model
- Fast Model

• Future Plans

- Line-by-line Model
- Fast Model

recent line-by-line development efforts. LBLRTM and kCARTA

- ARM Site Atmospheric State Best Estimate products
- The AERI / LBLRTM QME
 - longwave window water vapor continuum
- MTCKD v1.0 continuum module
 - H₂O
 - 15µm CO₂
- AIRS obs-calcs
 - non-Local Thermodynamic Equilibrium
 - CO2 line-mixing at 4.3µm
 - upper level water channels and the water vapor continuum
 - 710-720 1/cm

Self Broadened Water Vapor Continuum

AERI (downwelling at surface) obs-calc SGP ARM site, 22 July 2001, clear sky, LBLRTM

AIRS (upwelling at TOA) obs-calcs

SGP ARM site, Sep '02 to Feb '03, night, ~clear sky, kCARTA (Dec '02 Delivery)

<u>PLOD</u>

- current UW effort
- Polychromatic regression based model with fixed pressure levels following UMBC approach, but currently with LBLRTM physics
- Status:
 - "task0" is finished
 - Model is characterized, but performance is sub-par. Why ?
 - Regressions using SVDs and optical depth weighting
 - Incorporating kCARTA
 - Incorporating Adjoint and Tangent Linear modules

OPTRAN

- NOAA effort
- Polychromatic regression based model with fixed optical depth levels, currently with LBLRTM physics.
 Includes adjoint and tangent linear modules.
- Status:
 - GIFTS spectral parameters provided to NOAA
 - model built for GIFTS will be available in a few months

<u>OSS</u>

- AER, Inc. effort
- New approach using linear combination of selected monochromatic frequencies to represent channel radiances. LBLRTM based.
- A portion of the algorithm is patented.
- Has advantages due to the use of real (monochromatic) transmittances.
- Status:
 - gaining experience with a NASTI model
 - considering obtaining a model for GIFTS

Dependent Set Statistics: RMS(LBL-FM)

MURI version

MURI model w/ OD weighted SVD

AIRS model c/o L. Strow, UMBC

OSS model c/o Xu Liu, AER, Inc.

Dependent Set Statistics: Mean(LBL-FM)

1 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1 00 600 800 1000 1200 1400 1600 1800 2000 2200 2400

MURI version

MURI model w/ OD weighted SVD

AIRS model c/o L. Strow, UMBC

OSS model c/o Xu Liu, AER, Inc.

OPTRAN, AIRS 281 channel set

Spectral correlation (LBL-FM), GIFTS Model, SVD w/ OD weighting

GIFTS-IOMI Clear Sky Forward Model

Status

- Line-by-line Model
- Fast Model

• Future Plans

- Line-by-line Model
- Fast Model

Line-by-Line Model. Future Plans

With the exception of a few spectral regions/issues, the line-by-line models kCARTA and LBLRTM are "converging" in general. Based on analysis of the highest quality validation cases, most spectral regions show absolute accuracy at or below the ~0.5 K level.

Remaining issues/efforts:

- Produce a "ground-up" estimate of line-by-line model errors
- Investigate temperature dependence of foreign broadened water vapor continuum
- Evaluate uncertainty of upper level water vapor "truth", and the nature of the 1400-1800 1/cm water vapor continuum and near wing lineshape
- Intercompare LBLRTM and kCARTA approaches to CO2 15µm lineshape
- Further validation of LBLRTM with upwelling TOA data (e.g. AIRS) and further validation of kCARTA with downwelling surface (e.g. AERI) data.
- Evaluate need for non-LTE in GIFTS model
- Investigate 710-720 1/cm obs-calcs

Temperature Dependence of C_f⁰

Predicted (Ma and Tipping, 1992) temperature dependence of C_f^0

Biggest uncertainty wrt upper level water vapor forward model is knowledge and parameterization of the foreign broadened water vapor continuum component of the absorption (C_f^0). For upper level water channels, the forward model is most certain at ~ 1587 1/cm, where a convergence of measurements and models of C_f^0 exists. (CKDv2.4 is/was known to be in error in this region and has since been fixed.) "Online" channels, which sense highest in the atmosphere, also have higher certainty because contribution from C_f^0 is small for these channels.

Fast Model. Future Plans

- UW PLOD model
 - Solve our accuracy problem
 - Finish Adjoint, TL, and jacobian modules
 - Re-make model with kCARTA and new dependent set profiles (UMBC 48 or UKMET 52)
 - Allow non-unit emissivity and add surface reflectance terms
 - Break-out other trace gases. CO, CH₄, CO₂, ...
- Obtain and gain experience with OPTRAN model from NOAA
- Obtain OSS model from AER (?)
- Evaluate PLOD vs. OPTRAN vs. OSS

The End

Thank You