Surface Characterization

3rd Annual Workshop on Hyperspectral Meteorological Science of UW MURI And Beyond

> University of Hawai'i Paul G. Lucey Co-Investigator

Hawaii Contributions To Wisconsin MURI Project

MURI	University of Hawaii Contributions		
Research Components	IR Spectral Phenomenology	Hyperspectral Data Collection	Hyperspectral Data Compression Methodologies
Mathematical Quantification of Hyperspectral Information		Provide test data sets	Leverage other- funded UH research to reduce data volume
Radiative Transfer Modeling	Contribute experience with measurement and modeling of surfaces		
Mathematical Retrieval Algorithm Development Product Research	Integrate modelin extraction	Contribute ground-truthed data sets ng/data collection/i	nformation

Surface Emissivity Simulation

- Use multispectral infrared satellite data as base map
- Fit infrared multispectral data with hyperspectral library data
- Produce continuous sampled spectrum at each pixel

Base Map

- Data from MODIS
- Convert to emissivity
- Detect and eliminate clouds
- Produce mosaic of simulation area

MODIS Base Map

MODIS Base Map Mosaic

MODIS features several bands with weak atmospheric extinction appropriate for surface characterization

MODIS "surface" bands constrain surface compositional types

Estimate of MODIS surface emissivity

MODTRAN coupled with aerosonde measurements provides atmospheric transmission, up and downwelling radiance.

Assume no multiple scattering

Lsat=Latm_upwelling+[B(T)e+L atm_downwelling*(1-e)]*tatm

At 11 microns assume e=1 to establish surface temperature

Solve for eat all wavelengths

Cloud Detection and Removal

- High visible radiance
- Low infrared radiance
- Change detection

- Mask detections, average emissivities of non-cloudy areas
- Residual clouds set to blackbody radiances at mean surface temperature

Emissivity assignment

- Extract soil emissivities at MODIS wavelengths (assumine Kirchoff's Law) from ASTER spectrum library (41 soils)
- Treat ASTER soils as lookup table
- Compare each MODIS spectrum to lookup table and return soil sample# for closest fit (by RMS differences)
- Insert full resolution ASTER spectrum at each location

Emissivity assignment

MODIS Emissivity Type Map

Spatial resolution: 1km Wavelength range: 685-2250 cm⁻¹ Wavelength sampling: 2 cm⁻¹ Spectral channels: 801

Simulation Improvements for Following Year

- Dynamic emissivity

 Vegetation senescence
 Surface moisture
- "Ground truth" using data from ASTER