Aerosols, Dust and Hyperspectral Remote Sensing

Irina N. Sokolik

Program in Atmospheric and Oceanic Sciences (PAOS) University of Colorado at Boulder sokolik@lasp.colorado.edu http://irina.colorado.edu

Direct Radiative Impacts of Mineral Aerosols

_		(Sokolik et al., 2001, JGR, Dust Special Issue)
	IMPACT	IMPORTANCE
	Top of the atmosphere radiative forcing (solar plus IR)	affects energy balance of the Earth's climate system
	Radiative forcing at the surface (solar plus IR)	affects surface temperature and surface-air exchange processes
	Radiative heating/cooling (solar plus IR)	affects temperature profile and atmospheric dynamics
	Actinic flux (UV)	affects photolysis rates and photochemistry

The global mean radiative forcing of the climate system for the year 2000, relative to 1750

Goals and Objectives

MAIN GOAL:establish a framework for the development ofa new physically-based treatment of mineral dustfor IR hyperspectral remote sensing

OBJECTIVES:

 analyze NAST-I spectra along with other observations performed in the East China Sea region during Spring of 2001 to identify an Asian dust spectral radiative signature

• perform detailed forward modeling to determine the sensitivity of GIFTS observations to regional dust properties and develop an atmospheric correction algorithm in the dust laden conditions

develop and test a new algorithm to retrieve dust from GIFTS observations

Dust storm over Texas, 15 March 2001

GOES-8, BT11-BT12

Effect of dust composition on remote sensing in the thermal IR region

Dust mineralogical composition depends on the source of origin

Mean Quartz/Clay and Calcite /Clay ratios within the airborne mineral aerosols from various locations

Spectral normalized extinction coefficient of selected minerals

(Sokolik and Toon, 1999)

Single scattering albedo of selected minerals

(Sokolik and Toon, 1999)

Effect of the dust mixture and loading on brightness temperature

(US 1976 Standard Atmosphere, observation at 100 km, averaging $\Delta v = 0.5$ cm⁻¹, dust in the lowest 2.5 km)

Analysis of NAST-I spectra for Spring 2001

SeaWiFs image showing Asian dust event on 3/12/2001

Fit to NAST-I brightness temperature spectra #1673, 1686, 1969

Differences in brightness temperatures: BT_{clear}-BT_{dust}

(US 1976 Standard Atmosphere)

Schematic diagram of the dust retrieval scheme

Selection of microwindows

Database

Regional soil and wind-blown dust samples

Asian Dust Databank: China, Kazakhstan, Tadzikistan, Afghanistan and Mongolia

Saharan Dust (in collaboration with Paris Univ.12, France, and Univ. of Mainz, Germany)

Arabian dust: dust samples from Saudi Arabia

• Library of atmospheric aerosol refractive indices (LAARI)

 Climatology of transport routes and vertical distributions of dust outbreaks

Lidar network (China-Korea-Japan)

LIBRARY OF ATMOSPHERIC AEROSOL REFRACTIVE INDICES (LAARI)

• LAARI includes spectral optical constants of individual aerosol species and their aggregates over the range of wavelengths from about 0.2 μ m (UV) to 50 μ m (IR).

MINERAL DUST SULFATES NITRATES SEA-SALT CARBONACEOUS MIXTURES

Imaginary part of the refractive index of selected minerals

(Sokolik and Toon, 1999)

