VADUGS algorithm Volcanic Ash Detection using Geostatonary Satellites

Kaspar Graf (1), Stephan Kox (1, *), Marius Schmidl (1), Josef Gasteiger (2), Robert Buras (2) (1) Institute of Atmospheric Physics, DLR, Germany (2) Ludwig Maximilians Universität, Meteorological Institute, Munich, Germany

(*) = now at EUMETSAT

WMO Intercomparison Workshop, Madison, WI

Knowledge for Tomorrow

29 June – 02 July 2015

The DLR project VolcATS – idea and goals

- > 100.000 flights cancelled
- 313 europ. airports closed
- Showed gaps in ATC procedures
- → Volcanic ash impact on the Air Transportation System

1. Nowcasting (Detection + short-term forecasting) of **ash-free** and **ash-contaminated regions** based on satellite data (radiative transfer calculations and algorithm development) + Definition of *"*visible ash"

ash" 2. In-situ SO₂ and particle sensor development for airliners

3. Development of **ATM-procedures** for a fast response of the **air transportation system on volcanic ash in airspace**

TeFiS project: VADUGS as secondary source

- Current regulation in Germany: flights in "grey areas" (2-4 mg/m³) are allowed (need for special approved risk assessment procedures of the airline).
- Within this risk assessment, secondary source information has to be considered
- Development of VADUGS towards an operational product operated within the DWD facilities and adapted to the needs of end user (e.g. airline dispatcher)

Zonenbezeichnung gemäß ICAO Doc-19 (EUR/NAT)	Zonenbezeichnung gemäß EASA SIB 2010-17R2	vorhergesagte Maximal- Kontamination	Farbcode gemäß VAAC
	Normal Zone	weniger als 0,2 mg/m ³	kein
Area of low contamination = mit Vulkanasche geringfügig kontaminierter Luftraum	EPZ (b) Enhanced Procedure Zone	0,2 mg/m³ oder mehr, jedoch weniger als 2 mg/m³	türkis
Area of medium contamination = mit Vulkanasche mäßig kontaminierter Luftraum	EPZ (a) Enhanced Procedure Zone	2 mg/m ³ oder mehr, jedoch weniger als 4 mg/m ³	grau
Area of high contamination = mit Vulkanasche stark kontaminierter Luftraum	NFZ No Fly Zone	4 mg/m ³ oder mehr	rot

VolcATS – idea and goals

The VADUGS algorithm for ash detection is based on SEVIRI aboard MSG, since:

- High temporal and spatial resolution
- 7 channels located in the thermal infrared (day/night)
- Operational and high / fast data availability
- Existing expertise in IPA
- Sensitivity of SEVIRI measurements on VA already proven
- Upcoming SEVIRI-like instrumtens
 - ightarrow almost global coverage

VADUGS **Volcanic Ash Detection Utilizing Geosationary Satellites** Highly sensitive cirrus cloud retrieval (COCS) supports the algorithm Based on a 6.2 µm neuronal network 7.3 µm flight leve 8.7 µm 9.7 µm

13.4 µm Additional input: T SURF LSM

10.8 µm

12.0 µm

SEVIRI IR

During training: Based on radiative transfer calculations with different atmospheric situations, types of volcanic ash, and mineral dust

products:

- no ash no info ash
- Ash column concentration (g/m^2)
- Top altitude of ash layer

libRadtran

Mayer and Kylling, 2005

VADUGS Setup of the training data - 1

- Background: Meteorological fields from the NWP model ECMWF – IFS
 - Surface temperature, Temperature, ozone, water vapour, clouds
 - Use of one day per month in order to account for seasonal variability
 - Radiative Transfer calculation of the brightness temperatures (SEVIRI channels) for the original ECMWF field
 - For water clouds, parameterization according to Bugliaro et al., 2011 (different parameterization for land/sea)
 - Ice cloud parameterization: Wyser (1998) and McFarquhar (2003)

VADUGS Setup of the training data - 2

- Now, volcanic ash layers are merged with the input meteorological fields
- Different VA types are treated separately
- Different vertical dimensions of the ash layer are represented
- Different mass concentration (g/m³)
- Different top altitude of ash layer
- Different size distributions: accumulation mode (0.4 μm) & coarse mode (2 μm)

Simulated BT representing the original ECMWF IFS fields + artificial VA layers

VADUGS List of different ash types

AlbiteMutschke, 1998AndesitePollack et al., 1973AnorthiteAronson and Strong, 1975Eyjafjallajökull ashD. Peters, 2012-09-28, personal communicationLime soda glassAronson and Strong, 1975ClinopyroxeneAronson, 1986MagnetiteGlotch and Rossman, 2009	Material	Source
	Albite Andesite Anorthite Eyjafjallajökull ash Lime soda glass Clinopyroxene Magnetite	Mutschke, 1998 Pollack et al., 1973 Aronson and Strong, 1975 D. Peters, 2012-09-28, personal communication Aronson and Strong, 1975 Aronson, 1986 Glotch and Rossman, 2009

- ANPA Andesite (pure), accumulated
- ANPC Andesite (pure), coarse
- EYPA Eyjafjallajökull ash (pure), accumulated
- EYPC Eyjafjallajökull ash (pure), coarse
- ANMA Andesitic mixture, accumulated
- ANMC Andesitic mixture, coarse
- DCMA Dacitic mixture, accumulated
- DCMC Dacitic mixture, coarse
- RDMA Rhyodacitic mixture, accumulated
- RDMC Rhyodacitic mixture, coarse
- RLMA Rhyolitic mixture, accumulated
- RLMC Rhyolitic mixture, coarse

<at> V</at>	<i>V</i> olcanic a	sh type:
Volcanic	ash type:	andesitic mixture, accumulated (Klüser et al.)
Volcanic	ash type:	andesitic mixture, coarse (Klüser et al.)
Volcanic	ash type:	andesite, accumulated (Pollack et al.)
Volcanic	ash type:	andesite, coarse (Pollack et al.)
Volcanic	ash type:	dacitic mixture, accumulated (Klüser et al.)
Volcanic	ash type:	dacitic mixture, coarse (Klüser et al.)
Volcanic	ash type:	Eyjafjallajökull ash, accumulated (Peters et al.)
Volcanic	ash type:	Eyjafjallajökull ash, coarse (Peters et al.)
Volcanic	ash type:	rhyodacitic mixture, accumulated (Klüser et al.)
Volcanic	ash type:	rhyodacitic mixture, coarse (Klüser et al.)
Volcanic	ash type:	rhyolitic mixture, accumulated (Klüser et al.)
Volcanic	ash type:	rhyolitic mixture, coarse (Klüser et al.)

WMO Intercomparision: Eyjafjallajökull ash

VADUGS Volcanic Ash Detection Utilizing Geosationary Satellites

VADUGS Spatial distribution of training data

Position of the training data profiles are selected in compliance with the SEVIRI field of view

The random position are generated from equidistant lat/lon grids

VADUGS Vertical extent and top altitude

Vertical extent of the VA layer varies between 0 m and 1.5 km

Top altitude varies from 0 m (above ground) to 14 km

This image is just an example – other ranges of VA extent / VA top altitude were considered separately and mixing of training data allows for extension of the ranges

vertical extent of ash layer / m

VADUGS

Effect of VA layer on brightness temperature @ 10.8 µm

VADUGS

Effect of VA layer on brightness temperature diff 10.8 - 12µm

Satellite zenith angle: 0°

Satellite zenith angle: 0°

Satellite zenith angle: 60°

Andesite

V_{DL}

VADUGS Volcanic Ash Detection Utilizing Geosationary Satellites

VADUGS Volcanic Ash Detection Utilizing Geosationary Satellites

COCS Cirrus Optical properties derived from CALIOP and SEVIRI during day and night

Based on a neural network utilizing the IR-channels of SEVIRI Trained with 8000000 co-incident measurements of CALIOP aboard CALIPSO

→ Cirrus ice optical thickness, top altitude, and ice water path (under development) in the current version.

COCS Ice optical thickness 20100517 at 12:00 UTC 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 ō 0.7 0.6 0.5 0.4 0.3 0.2 18.10.2008 3.0 COCS Cirrus optical thickness 2.5 Aean HSRL 2.0 1.5 1.0 0.5 0.0 13:30 13:00 15:30 14:00 14:30 15:00 16:00 Time / h

Kox et al, AMT, 2014

VADUGS + COCS on 17th May 2010

DLR

VADUGS + COCS on 17th May 2010

VADUGS + COCS on June 2011 Puyehue eruption

Conclusions and Outlook

- VADUGS is based on a NN utilizing the infrared measurements of SEVIRI's IR channels
- Trained by radiative transfer calculations with several different "definitions of ash", (E15, Andesite, Andesite mix, Rhyolite mix)
- The performance with respect to ash load looks promising; however, quality of top altitude is poorly in some cases
- Low run-time of less than 600 s on a common desktop

Next steps:

- Further training (change in spatial sampling → better representation of higher latitudes)
- Temperature profiles from ECMWF -> this should enhance the quality of ash top altitude retrieval
- Validation of VADUGS and publication

Thank you for your attention

Questions?

Contacts: Kaspar.Graf@dlr.de

Bekanntmachung der Allgemeinverfügung des Bundesministeriums für Verkehr, Bau und Stadtentwicklung über Regelungen für die Durchführung von Flügen in mit Vulkanaerosol (Vulkanasche) kontaminierten Lufträumen

Vom 23.05.2011

Allgemeinverfügung

2. Mit Vulkanasche mäßig oder stark kontaminierte Lufträume

Für Lufträume, die nach SIGMET und NOTAM mäßig oder stark mit Vulkanasche kontaminiert sind, gilt:

2.1 Flüge in mit Vulkanasche gemäß SIGMET und NOTAM mäßig oder stark kontaminierten Lufträumen sind verboten.

2.2 Von dieser Allgemeinverfügung sind folgende Flüge ausgenommen:

- Flüge, bei denen der Luftfahrzeugführer eine Notlage erklärt oder bei denen eine Notlage offensichtlich ist,
- Schutzflüge der Luftverteidigung,
- Flüge von Streitkräften und Polizei,
- Flüge im Such- und Rettungseinsatz,
- Flüge mit kranken oder verletzten Personen, die sofortiger Hilfe bedürfen, einschließlich der Flüge, die zur lebenserhaltenden ärztlichen Versorgung von Kranken oder Verletzten dringend erforderlich sind,
- Flüge für die Erforschung und Messung der Kontamination mit Vulkanasche nach Beauftragung durch das BMVBS,
- Flüge von Luftfahrzeugen mit Kolbenmotoren,
- Flüge von Luftfahrzeugen ohne Motorantrieb und
- Flüge von turbinengetriebenen Luftfahrzeugen in mit Vulkanasche mäßig kontaminierten Lufträumen nach einer Risikobewertung des Luftfahrtunternehmens, welche vom jeweiligen Triebwerkshersteller mitgetragen wird und vom Luftfahrt-Bundesamt als ausreichend anerkannt wurde.