A Swarm Intelligence Method for Feature Tracking

M.A. Hernandez-Carrascal and S.J. Nasuto

School of Systems Engineering
University of Reading, U.K.

9th International Winds Workshop – April 2008
Outline

1. Introduction
2. Feature tracking as a search problem.
4. SDS and feature tracking in sat images.
5. Conclusion and plans for the future.
1. Introduction – why this project?

- Research project started “the other way around”.
- We started with Stochastic Diffusion Search
 – a search technique in the Swarm Intelligence family.
- We were looking for a challenging real-life application.
 – SDS used in feature tracking in other areas.
 – AMVs a familiar problem.
- We decided to explore the potential of SDS to address feature tracking in AMV derivation.
2. Feature tracking as a search problem

• Operations: usually template matching methods
 – A box (e.g. 20*20 pixels) in image 1 is selected as a template.
 – We look for its best match within a search area in image 2.
 – This is done for a number of templates in image 1.

• Objective function defines how good a match is:
 – Distance / similarity between radiance vectors.
 – Euclidean distance – min is optimal.
 – Cross correlation – max is optimal.

• Computationally expensive, reliable.
• But also other methods, e.g. optical flow.
2. Feature tracking as a search problem

- Feature tracking as an optimisation problem:
 - We look for the optimal values of an objective (real valued) function within the search space.
- If the search space is 2-dim, we can visualize the objective function as a landscape
 - error landscape – we look for the min, as with ED
 - fitness landscape – we look for the max, as with CC.
 - Landscape example - ED for MSG WV 6.2 μm
- We can turn to generic search techniques.
2. Feature tracking as a search problem

- Exhaustive search
 - reliable, can be computationally expensive.
- Gradient descent/ascent (smooth surfaces)
 - cheaper when possible but can get stuck in suboptimal locations.
- Random search
 - generate locations randomly, keep the best.
- Genetic algorithms – population based
 - best locations retained,
 - then recombined to generate new locations.
- Swarm Intelligence – population based
 - Problem solving abilities of the system emerge from simple individual behaviour.
3. Stochastic Diffusion Search (SDS)

- Key characteristic of SDS: objective function must be decomposable into microfeatures.
- We start with a collective of simple agents.
- Agents’ behaviour. Each agent
 - has a location in search space (hypothesis),
 - is able to evaluate a microfeature of the objective function (e.g. one pixel),
 - is said to be active if evaluation positive,
 - can communicate location and activity with other agents,
 - can change location in two ways: random selection / copied from other.
3. Stochastic Diffusion Search - pseudoalgorithm

1 - All agents select hypothesis, randomly
2 - Loop (until golden brown)

 # Test phase – **loop on all agents**
 * Each agent selects and evaluates a micro-feature.
 * If OK, agent is said to be active, otherwise inactive.

 # Diffusion of information – **loop on inactive agents**
 * Each agent selects randomly another agent.
 * If agent contacted is active, its hypothesis is copied, otherwise a new hypothesis is randomly selected.

End loop
3. Stochastic Diffusion Search (SDS)

- Illustration – the restaurant example (Mark Bishop).
- A group of delegates attending a conference have the task of finding the best restaurant in town (tough!).
- Each delegate chooses a restaurant randomly.
- And tests one dish (not the whole menu).
- The following morning, delegates chat about restaurants.
- Those happy with their restaurant return in the evening.
- Those unhappy with their restaurant contact randomly another delegate and
 - Copy the restaurant if the contacted delegate is happy.
 - Choose a random restaurant in town otherwise.
3. Stochastic Diffusion Search (SDS)

- SDS is simple and robust.
- It can be extended to exploit any knowledge of the error surface.
- How do we get the best location?
 - The score of a location is the % of microfeatures that return positive evaluation.
 - Locations with high scores attract agents.
 - Eventually, agents cluster around the best location(s).
- SDS suitable in problems where objective function
 - is computationally expensive,
 - can be decomposed into microfeatures.
4. SDS and feature tracking in sat images

• Definition of objective function a key issue
 – For representing the suitability of a location.
 – Also for convergence. Objective function: many are possible.

• Two functions considered. Micro-feature evaluation defined as:
 1. Random selection of pixel in template (i). Eval is positive if
 • $|R(i) - R'(i)| < \varepsilon$.
 2. Random selection of two pixels in template (j and k). Eval is positive if
 • $\text{Sign } (R(j) - R(k)) = \text{Sign } (R'(j) - R'(k))$
4. SDS and feature tracking in sat images

- Started with WV 6.2 μm.
 - To avoid coastlines, multilayer scenes.
- Artificial sequence, “known” displacement:
 - Not realistic – there is a unique perfect match
 - But we know the “truth” – useful to spot flaws in the system.
- Real sequence:
 - Evaluation: consistency (spatial, temporal).
 - Good template selection essential – error landscapes can be very different. (Now: contrast 48, std dev 8).
4 - Area
4. Template selection
4 – Landscapes
4 – Landscapes
4 – Landscapes
4 – Flat landscape
4 – Flat landscape
4 – Flat landscape
5. Conclusions

• SDS seems a potentially useful framework.
• More questions than answers.
• Key issues:
 – When is the best solution to the minimisation problem likely to yield a good estimate of displacement?
 • Mainly related to the template - not part of this research – advice welcomed!
 – Objective function to measure similarity / distance:
 • Can make a difference in computational efficiency.
 • Able to find the best solution (with good templates)
 • Representation of the radiance field.
5. Conclusions – plans for the future

• Explore different representations and related objective functions
 – E.g. Fourier or wavelets expansion.

• Explore extension of SDS – search space is smooth.

• Consider also rotation and/or deformation.
 – Search space would be 3 (or 4 or 5) dimensional.
 – SDS is a general framework, extension OK.
 – Increasing computer power and comp savings could be used in more complex search space.
 – Could improve the quality of the calculated vectors.
Thank you for your attention!
Notes

- All data: Meteosat-9, 17 July 2007 ~ 10 UTC
- Images 500*500 pixels.
Notes – ED – from real seq.

Euclidean distance
Meteosat-9 WV 6.2 - 17/07/2007