AMV inter-comparison between GK-2A and MTG algorithm using Himawari-8/AHI

Soomin Oh¹, Byung-il Lee¹, Regis Borde², Manuel Carraza², Sung-Rae Chung¹, Seongkyun Baek¹ ¹Satellite Development Division, Natioanl Meteorological Satellite Center, Jincheon 27803, Korea; dotoa@korea.kr ²European Organisation for the Exploitation of Meteorological Satellites, Darmstadt 64283, Germany

***** Introduction

The GEO-KOMPSAT-2A (GK-2A) and METEOSAT Third Generation (MTG) AMVs were compared to evaluate the accuracy of algorithm. The 3rd AMV inter-comparison study cases were selected for validating wind speed, wind direction, height and quality indicator. We compared two results using exactly same input data and configuration and their own one on 12:10 UTC at 21 July 2016. The first case showed very similar results for the 4 variables. For the second case, the distribution of wind speed and wind direction show very similar because both algorithms are using same methods such as optimal target selection and Cross Correlation Coefficient in target selection and tracking, respectively. However, the height distribution and quality indicator of the vectors are not similar since methods used are different from each other. In addition, GK-2A AMV algorithm performs slightly better than COMS AMV algorithm.

GK-2A and MTG AMV Algorithm

		GK-2A AMV	MTG AMV		
Target selection		Optimal (Statistic)	Optimal (Statistics)		
Target tracking		CC	CC		
Height	Cloudy target	1. CCC 2. EBBT&IR/WV rationing 3. CO2 slicing (+ Inversion layer correction)	CCC (+ Inversion layer correction)		
assignment	Clear target	NTC&NTCC	1. NTC&NTCC 2. EBBT		
	coverage	100~1000 hPa	0~1050 hPa		
Quality control		Quality Indicator	Quality Indicator		

Validation

1. With NWP and Sonde(12 UTC 21 July 2016)

 GK-2A AMV algorithm are base on COMS and MSG/MTG AMV algorithm. The key part of each step is set to be almost the same as those of MTG. In height assignment process, we use EBBT, IR/WV rationing, CO2 slicing methods in addition to CCC method since our CTP product are still being developed.

 In this study, we consider 3 configurations as "GK-2A own configuration", "MTG own configuration", "Prescribed configuration". In prescribed configuration, GK-2A and MTG AMV algorithm use the same input.

Configuration		GK-2A AMV own	MTG AMV own	Prescribed		
Input L1b Images		3 images (proxy: Himawari8/AHI)	3 images (proxy: Meteosat-10/SEVIRI)	3 images (Himawari8/AHI)		
Triplets		05 UTC Triplet : 20 12 UTC Triplet : 20	201607210550 UTC 201607211220 UTC			
Target box size	IR	16 by 16 pixels	24 by 24 pixels	16 by 16 pixels		
Search box size	IR	54 by 54 pixels	80 by 80 pixels	54 by 54 pixels		

Speed, Direction, Height, Quality Indicator distribution(12 UTC 21 July 2016) TEST1: Prescribed Configuration(dotted curve)

	GK-2A								MTG			
Ch13	Presc	ribed	Own				Prescribed (/n		
	ссс		ссс		EBBT&IR/WV		CO2		ссс		ссс	
	ECMWF	Sonde	UM N768	Sonde	UM N768	Sonde	UM N768	Sonde	ECMWF	Sonde	ECMWF	Sonde
				All levels(10	000-100 hPa)					All levels(10	00-100 hPa)	
Number	33706	862	38190	836	26825	492	28517	584	36659	787	17340	362
NMVD	0.233	0.311	0.405	0.414	0.278	0.304	0.277	0.297	0.314	0.342	0.321	0.337
NRMSVD	0.313	0.368	0.540	0.500	0.361	0.358	0.362	0.352	-0.033	-0.058	-0.043	-0.063
Nbias	-0.045	-0.080	-0.071	-0.051	-0.012	-0.031	-0.032	-0.008	-0.033	-0.058	-0.043	-0.063
NRMSE	0.243	0.278	0.405	0.398	0.267	0.282	0.271	0.266	0.243	0.259	0.240	0.255
Mean_SPD	16.29	19.75	15.29	18.66	15.99	19.29	16.65	19.78	15.7	19.22	15.93	19.19
	High levels(400-100 hPa)								High levels(4	00-100 hPa)		
Number	21053	786	23505	714	14429	425	17361	548	20976	688	9720	314
NMVD	0.235	0.305	0.395	0.402	0.281	0.289	0.282	0.291	0.231	0.277	0.251	0.272
NRMSVD	0.307	0.359	0.503	0.480	0.343	0.339	0.345	0.345	0.302	0.327	0.306	0.322
Nbias	-0.049	-0.074	-0.103	-0.064	-0.021	-0.037	-0.028	-0.004	-0.036	-0.051	-0.045	-0.053
NRMSE	0.237	0.272	0.379	0.381	0.253	0.263	0.255	0.263	0.233	0.247	0.226	0.246
Mean_SPD	18.39	20.39	17.45	20.21	17.94	20.54	17.67	20.33	18.56	20.34	19.36	20.4
			Mic	dle levels(7	'00 hPa-400 hP	Pa)			Mi	ddle levels(70)0 hPa-400 hF	Pa)
Number	3979	65	5876	90	4415	51	4301	27	4572	66	2092	33
NMVD	0.252	0.412	0.445	0.448	0.290	0.475	0.291	0.431	0.256	0.427	0.256	0.434
NRMSVD	0.320	0.484	0.605	0.566	0.391	0.586	0.391	0.502	0.325	0.502	0.344	0.505
Nbias	-0.097	-0.186	-0.062	0.092	-0.044	0.152	-0.087	-0.132	-0.089	-0.142	-0.111	-0.170
NRMSE	0.256	0.373	0.472	0.453	0.299	0.525	0.307	0.342	0.261	0.387	0.270	0.345
Mean_SPD	19.03	14.02	16.29	10.64	20	11.47	22.25	12.91	18.41	12.94	18.33	12.85
	Low levels(1000-700 hPa)								Low levels(10)00-700 hPa)		
Number	8674	11	8809	32	7981	16	6855	9	11111	33	5528	15
NMVD	0.210	0.382	0.402	1.058	0.256	0.474	0.238	0.600	0.211	0.545	0.246	0.693
NRMSVD	0.258	0.469	0.560	1.249	0.304	0.532	0.287	0.721	0.260	0.668	0.297	0.833
Nbias	0.019	-0.020	0.090	0.149	0.051	-0.291	0.027	0.034	0.021	-0.151	0.016	-0.185
NRMSE	0.195	0.283	0.366	1.091	0.207	0.421	0.188	0.385	0.196	0.404	0.194	0.444
Mean_SPD	9.92	7.98	8.88	6.72	10.23	11.11	10.53	7.43	9.18	8.5	9	7.9

- GK-2A AMV algorithm based on MTG AMV algorithm, so distributions are very similar.
- are similar, but ones for both own configurations(solid curves) are different because CTP used in each algorithm is different. In EBBT&IR/WV and CO2 slicing methods, distributions are very similar to each other.

Comparison between GK-2A QI and MTG QI									
Forecast Consistency	Spatial Consistency	Speed Consistency	Direction Consistency	Vector Consistency					
QI_FC Frequency	QI_LC Frequency	QI_SPD Frequency	QI_DIR Frequency	QI_VEC Frequency					

• In prescribed configurations, GK-2A statistics is similar to MTG statistics.

In its own configurations,

 \rightarrow GK-2A statistics for CCC is worse than any other case.

 \rightarrow GK-2A statistics for EBBT&IR/WV rationing and CO2 slicing are also similar to MTG statistics.

2. With CALIPSO CALIOP data

Comparison with COMS, Himawari-8 AMVs

	GK-	2A	CON	٨S	Himawari-8		
	UM N768	Sonde	UM N768	Sonde	UM N768	Sonde	
Number	592415	59384	392130	25835	570451	52153	
MVD	4.21	4.92	4.34	5.62	4.12	4.78	

 This table show validation score of GK-2A, COMS and Himawari-8 AMVs on July 2016.

- There are big differences in Spatial Vector Consistency' shape. It's because all buddies are collected to calculate final Spatial Vector Consistency in GK-2A algorithm but the only 2 best buddies were collected in MTG algorithm. That's why MTG's Spatial Vector Consistency has a sharper peak around QI=100 than GK-2A.
- The rest of consistencies are similar except for Forecast Consistency which is slightly different.

RMSVD	5.18	6.08	5.17	6.82	5.01	6.01	 GK-2A statistics is better than COMS.
Bias	-0.03	-0.47	-0.45	-0.76	-0.10	-0.27	
RMSE	3.78	4.54	4.20	5.35	3.70	4.40	 GK-2A statistics is similar to Himawari-8.
Mean_SPD	13.32	16.26	13.56	15.88	13.52	16.05	

Summary and Further Study

- GK-2A AMV algorithm is based on COMS and MSG/MTG AMV algorithm.
- For Ch13 cloudy AMVs, our speed, direction, height, and common QI distribution is very similar to each other, and validation results are also similar.
- GK-2A AMV performs slightly better than COMS AMV algorithm.
- In further study, we'll compare our GK-2A AMVs with MTG AMVs for other channels such as CH03, 07, 08, 09, 10. Not only clear AMVs but also cloudy AMVs will be a very important issue.