

Recent work using Satellite winds at the Deutscher Wetterdienst (DWD)

Alexander Cress Deutscher Wetterdienst, Frankfurter Strasse 135, 63067 Offenbach am Main, Germany alexander.cress@dwd.de

- Introduction
- Recent changes in satellite wind usage
- New projects (HR AMVs / NWPSAF DWD cooperation)
- Use of scatterometer data
- Aeolus plans
- Summary

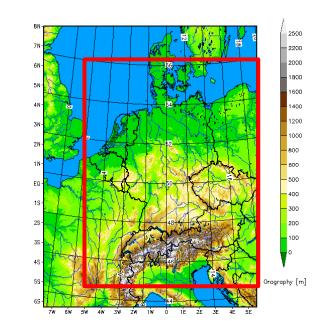
The *deterministic* NWP-System of DWD

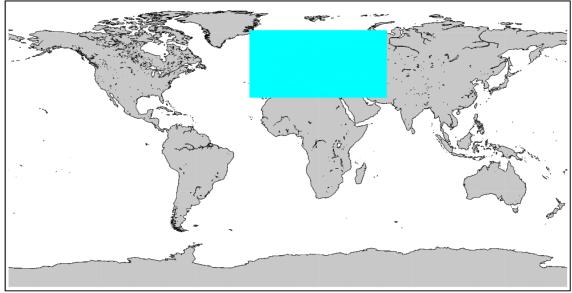
Wetter und Klima aus einer Hand

Global-Modell ICON

grid size: 13 km vertical levels: 90 Grid area: 173 km² Hybrid DA

- 13km VarEnKF
- Flow dependent B:
 - $B_{VarEnKF} = \alpha B_{LETKF} + (\alpha 1)B_{3DVAR}$
- Incremental analysis update
- SST, SMA and snow ana


ICON-EU Nest over Europe


grid size: 6.5 km Vertical levels: 60 forecasts: Grid area: 43 km²

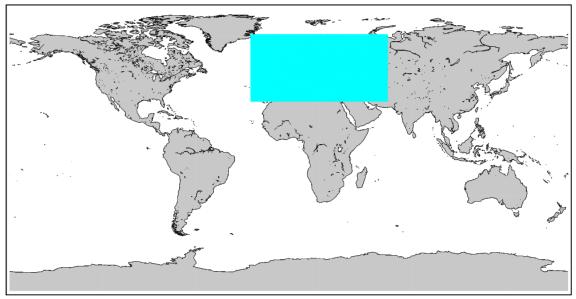
COSMO-DE (convection

resolving)

grid size: 2.8 km vertical levels: 50 forecasts: 3-hourly Girid area: 8 km² Det LETKF replaced nudging

ICON-EPS; M40

ICON-EU Nest over Europe

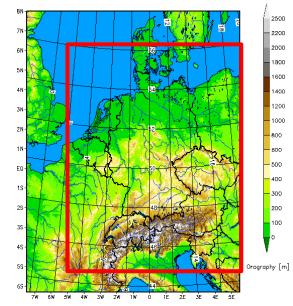

grid size: 40 km vertical levels: 90 grid area: 1638 km² Ensemble DA

grid size: 20 km vertical levels: 60 forecasts:

grid area: 407 km²

• 40 member 40km LETKF.

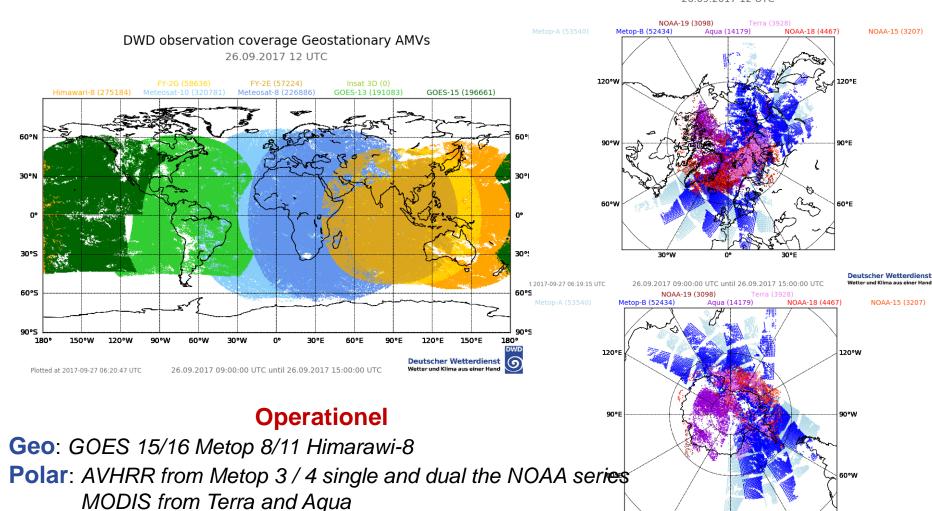
- Horizontal localization radius 300km.
- Relaxation to prior perturbations (0.75).
- Adaptive inflation (0.9 1.5).
- SST perturbations Soil moisture perturbations (experimental)



COSMO-DE-EPS; M20

grid size: 2.8 km vertical levels: 50 Forecasts: 3-hourly grid area: 8 km²

Ensemble DA


40 member 2.8 km LETKF SST pertubations Soil moisture pertubations

DWD observation coverage Polar orbiter AMVs 26.09.2017 12 UTC

30°E

Deutscher Wetterdienst Wetter und Klima aus einer Hand

30°W

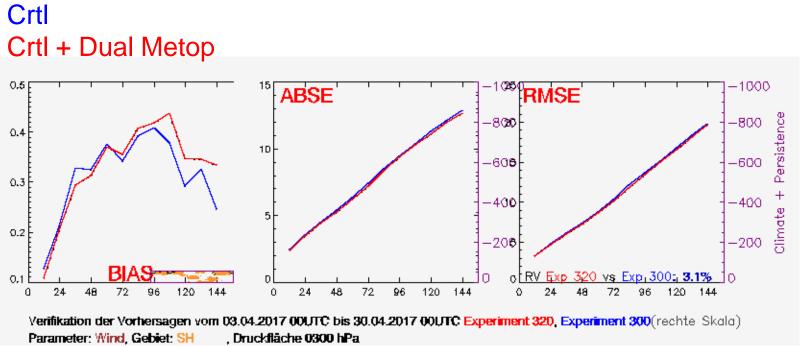
6

Changes in operationel usage of satellite winds since the last meeting

- Use of Dual Metop AMV winds
- Replacing Meteosat 10 by Meteosat 11 winds
- Filling the gap over eastern America by GOES 16 winds
- ScatSat ocean winds in parallel routine

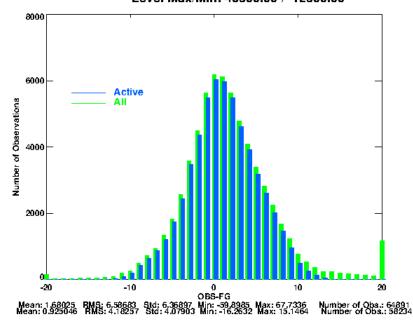
Crtl plus dual Metop – Crtl

all AMVs except dual Metop data

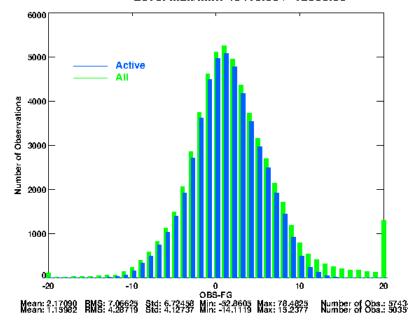

- **Positive impact using the other AMVs on both hemispheres**
- **Slightly more AMV data active**

Wind 300 hPa

- Positive impact using Dual Metop on both hemispheres
- Larger on the Southern Hemisphere in higher troposphere

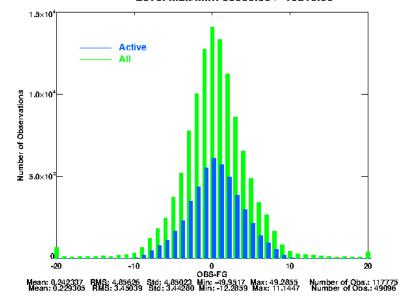

Obs –**FG** statistics

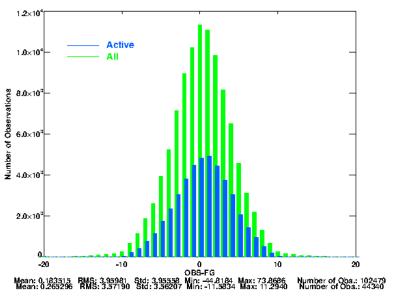
Comparison Meteosat 10 / Meteosat 11


Deutscher Wetterdienst

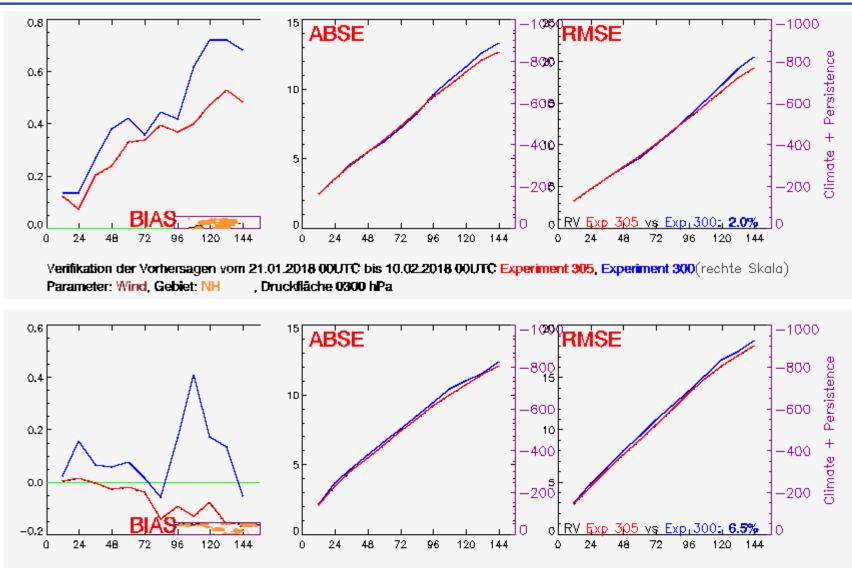
AMV Satellite: METEOSAT 10 / WV cloudy wind speed [m] Date : 2018020700 - 2018022821 North: 90.00 SOUTH: -90.00 WEST: -180.00 EAST: 180.00 Level Max/Min: 46300.00 / 12300.00

AMV Satellite: METEOSAT 11 / WV cloudy wind speed [m] Date : 2018020700 - 2018022821 North: 90.00 SOUTH: -90.00 WEST: -180.00 EAST: 180.00 Level Max/Min: 46410.00 / 12300.00


	Meteosat 10 global		Meteosat 11 global	
Bias	1.69	0.93	2.17	1.16
	3,76	0.86	4.15	1.00
Std	6.37	4.08	6.72	4.13
	9.03	3.86	9.15	3.83


Obs – FG statistics Comparison GOES 16 / GOES 15

AMV Satellite: GOES 15 / WV cloudy wind speed [m] Ex Date : 2018012100 - 2018021921 North: 90.00 SOUTH: -90.00 WEST: -180.00 EAST: 180.00 Level Max/Min: 38700.00 / 13700.00

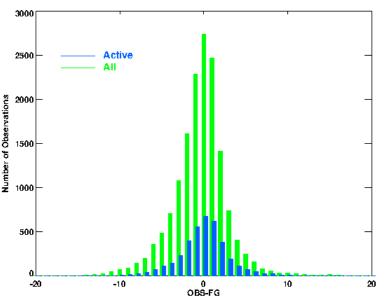

	GOES 16 global		GOES 15 global	
Bias	0.24	0.23	0.19	0.26
Std	4.85	3.44	3.96	3.56

Crtl (ohne GOES 16 und Meteosat11) Exp: Mit Goes16 und Meteosat 11 AMVs

Wetter und Klima aus einer Hand

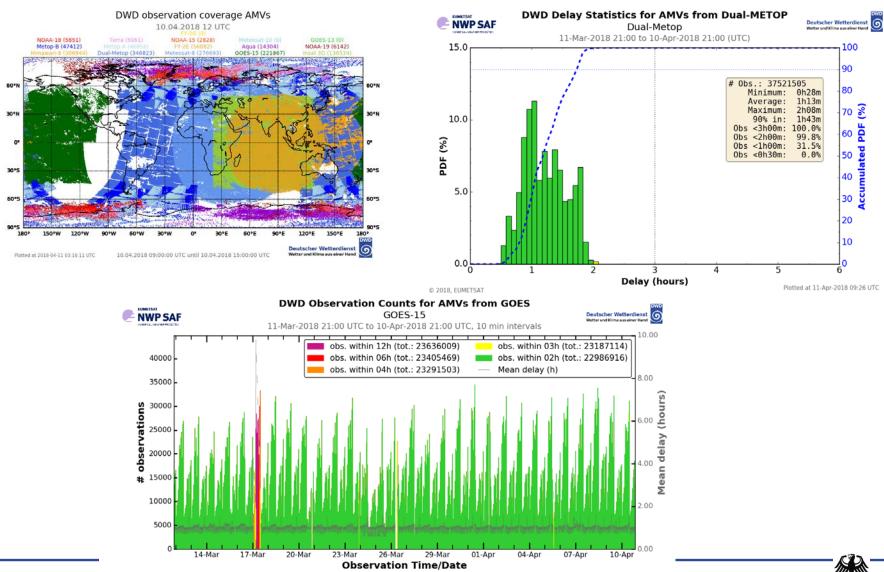
Verifikation der Vorhersagen vom 21.01.2018 00UTC bis 10.02.2018 00UTC Experiment 305, Experiment 300(rechte Skala) Parameter: Wind, Gebiet: SH , Druckfläche 0300 hPa

- Run the NWC SAF software to derive high resolution AMV Winds in house
- Software: NWC SAF Software v2013. The new version (v2016) runs in test modus
- The available patches are incoparated (Katja Hungersdörfer)
- Area: EUROPA B (defined in house)
- Output: AMVs in EUMETSAT Bufr format
- # Wind guess use flag WIND_GUESS
 0 ; no use of model winds
- DWD regional model system (COSMO/KENDA) is able to use HR AMVs similar to global system
- First monitoring experiment started



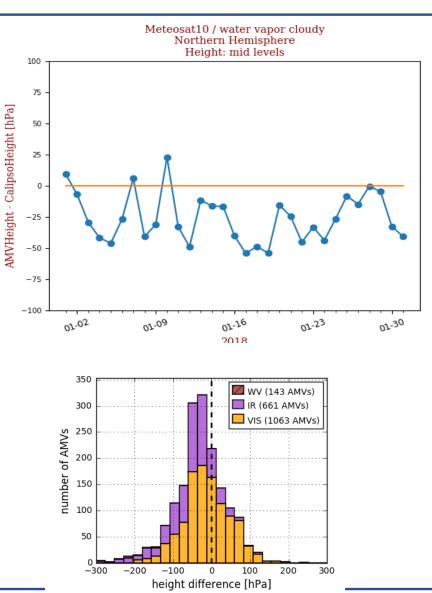
Use of high resolution AMV winds derived by NWC SAF

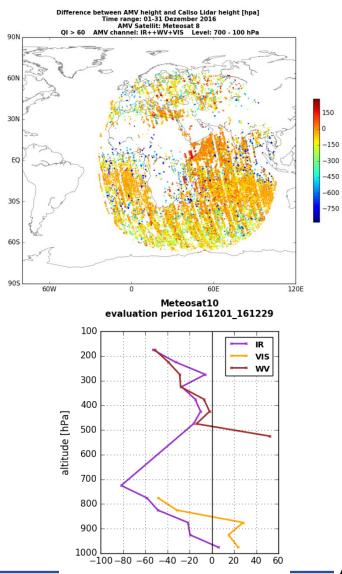
AMV Satellite: METEOSAT 10 / Visible wind speed [m] Ex Date : 2018012012 - 2018012323 North: 90.00 SOUTH: -90.00 WEST: -180.00 EAST: 180.00 Level Max/Min: 95000.00 / 20000.00


- HR AMV monitoring started in Jan 2018
- First results lock promising
- A lot of wind obs. in competition with AMVs in Kenda area (radisonde, aircraft, MODE-S, radial winds)
- \Rightarrow Not easy to show impact
- Long experiments needed => expensive
- Evaluation software has to be adapted

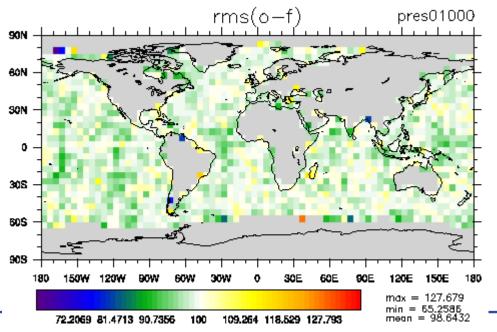
	IR	VIS	WV
BIAS	-2.00	-0.47	-1.21
	-0.63	-0.16	-0.08
RMS	4.96	3.28	5.01
	3.45	2.98	3.94
STD	4.54	3.25	4.98
	3.39	2.97	3.93

NWP SAF – DWD cooperation AMV monitoring

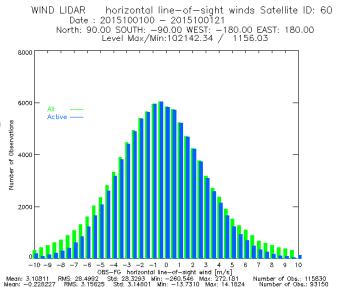

Deutscher Wetterdienst Wetter und Klima aus einer Hand



NWP SAF – DWD cooperation AMV-Calipso lidar height monitoring



Operationel use of ASCAT onboard Metop 3/4 Pre-operationel use of ScatSat Operational use of Altimeter data (Janson 2/3, SARAL) Wind speed bias correction of Scatterometer/Altimeter data


> Relative difference of obs – fq rms between exp. with and without ScatSAT data for ASCAT observations

mean: 98 64 %

Aeolus Wind Lidar work

- Aeolus will be launched in 2018
- Observation will be HLOS
- Level 2B Cal/Val rehearsal dataset provided by ECMWF
- The data has been regenerated (in March 2018) with the most recent processing chain: E2S v4.01, L1B v7.01 and L2B v3.00.
- Data are provided in Bufr Format
- Bufr reading is finished
- Observation operator implemented
- One day data assimilation with test data conducted
- Looking forward on the real data

Deutscher Wetterdienst

Deutscher Wetterdienst Wetter und Klima aus einer Hand

- Dual Metop data show postive impact for differnt seasons > AMVs operational since summer 2017
- Quality of Meteosat 11 AMVs comparable to Meteosat 10 operational since March 2018
- Qulaity of GOES 16 AMVs slightly better than GEOS 13, show potive impact
 - operational since April 2018 \geq
- HR AMVs production derived from NowCasting SAF software successfully implemented and first monitoring experiments started
- NWPSAF-DWD cooperation started => monitoring of Lidar-AMV heights ۲
- ScatSat winds in data assimilation system tested => operational this summer •
- Aeolus Wind Lidar test data in DA integrated

