WMO Oscar/Space Database Update

14th International Winds Workshop (IWW14)

23-27 April 2018, Jeju, Republic of Korea

Toshiyuki Kurino WMO Space Programme

World Meteorological Organization
Organisation météorologique mondiale

Contents

- What is WMO OSCAR
- OSCAR/Space maintenance Scheme
- IWWG's contributions to OSCAR/Space
- Recommendations for strengthening the overall process

What is WMO OSCAR?

Programmes > Space > Home

(http://www.wmo.int/pages/prog/sat/index_en.php)

WMO Space Programme

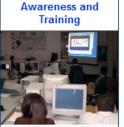
The Space Programme's objective is to promote availability and utilization of satellite data and products for weather, climate, water and related applications to WMO Members. It coordinates environmental satellite matters and activities throughout all WMO Programmes and gives guidance on the potential of remotesensing techniques in meteorology, hydrology and related disciplines.

Quick Access

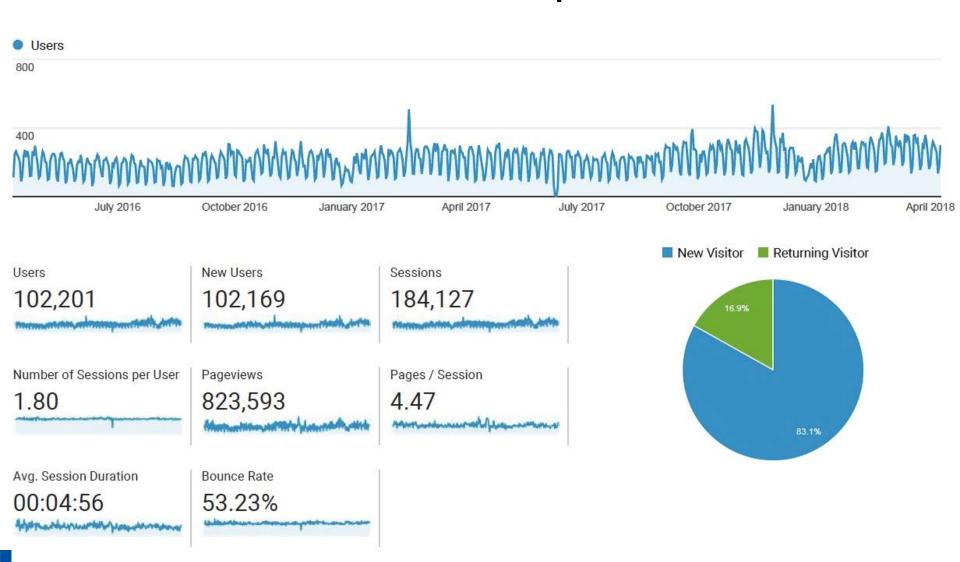
- OSCAR/Requirements (Observing Requirements Database)
- OSCAR/Space (Satellite & Instrument Database) 🗗
- Satellite User Readiness Navigator (SATURN)
- Product Access Guide (PAG)
- · Virtual Laboratory for Education and
- Working Documents for Meetings

The WMO Space Programme has 4 main components:

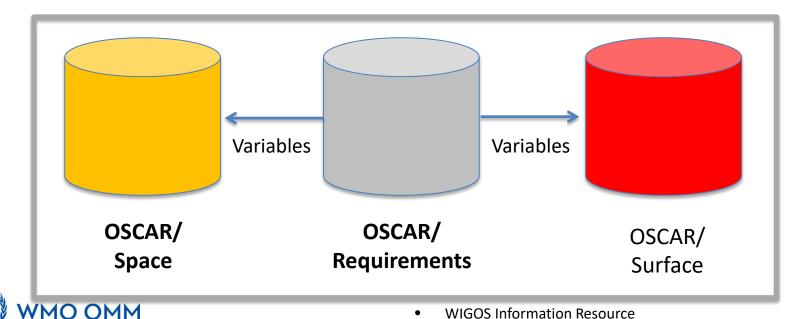
Upcoming Meetings and Events 04/04/17 to ET-SAT-11 06/04/17 02/05/17 to Inter-Programme Expert Team on 05/05/17 Satellite Utilization and Products, 3rd session (IPET-SUP-3) 16/05/17 to GODEX-NWP 19/05/17 » Go to Meetings and Events Latest News and Announcements


08/03/2017	Americas and Caribbean Focus Group session – 9 March 2017, 16:00 UTC
03/03/2017	The first imagery from China's next-generation weather satellite was released
13/02/2017	Satellite Foundation Course for GOES-R/16 (SatFC-G)

» Go to News and Announcements


Access to Satellite

Statistics on OSCAR/Space Audience


Statistics on OSCAR/Space Audience

Co	untry	Users	% Users
1.	United States	23,677	22.92%
2.	India	6,713	6.50%
3.	United Kingdom	5,386	5.21%
4.	Germany	5,050	4.89%
5.	China	4,613	4.47%
6.	France	3,852	3.73%
7.	Russia	3,303	3.20%
8.	Italy	3,147	3.05%
9.	Japan	3,014	2.92%
10.	Canada	2,742	2.65%

WMO Observing System Capability Analysis and Review tool (OSCAR)

- WMO-maintained online resource with 3 components:
 - OSCAR/Space: satellite programmes, instruments, and the variables they can observe
 - OSCAR/Surface: surface-based stations/platforms under WIGOS
 - OSCAR/Requirements: observation requirements for 14 "application areas" and for all relevant variables

Basis for WMO Rolling Review of Requirements

'OSCAR/Requirements' provides.....

OSCAR/ Requirements

14 WMO Application Areas:

- Global Numerical Weather Prediction
- High-resolution Numerical Weather Prediction
- Nowcasting
- Sub-seasonal to Longer-range Forecasting
- Forecasting Atmospheric Composition
- Monitoring Atmospheric Composition
- Atmospheric Composition info \rightarrow services in urban and populated areas
- Ocean Applications
- Aeronautical Meteorology
- Agricultural Meteorology
- Hydrology
- Climate Monitoring (GCOS) [now including GFCS requirements]
- Climate Applications
- Space Weather

https://www.wmo-sat.info/oscar/requirements

from Top Page of the OSCAR/Requirements

Observation Requirements | Space-based Capabilities

Surface-based Capabilities

Quick Search...

Overview Variables Requirements Layers Themes Application Areas

User requirements for observation (OSCAR/Requirements)

This database is the official repository of requirements for observation of physical variables in support of WMO Programmes and Co-sponsored Programmes. These requirements are maintained by the focal points designated for each application area.

It is the foundation of the Rolling Requirements Review (RRR) process overviewed by the Inter-Programme Expert Team on Observing System Design and Evolution (IPET-OSDE) of CBS. (More information)

The requirements are regularly reviewed by groups of experts nominated by these organizations and programmes. For WMO, this process is conducted by the Inter-Programme Expert Team on Observing System Design and Evolution (IPET-OSDE) and its designated focal points for each of the Application areas.

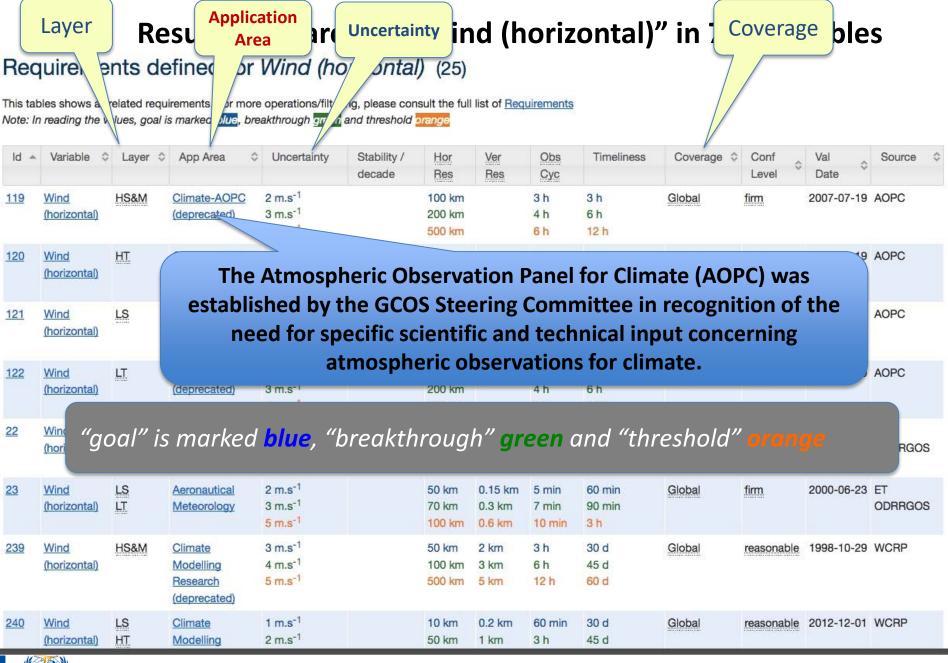
In addition, Themes offer an additional, cross-cutting view on variables and requirements

Using the database

To explore the database, you can use the "Quick Search" in the top right corner, when looking for a specific Variable or Application area. You can also consult the full tables accessible through the top menu, and use the filter options provided.

The database is open for consultation. Editing is only possible by designated focal points, after login.

For any questions or clarifications regarding the content of the database, please directly contact the respective focal point. A list of all focal points can be found on the Application areas page


Wind (horizontal) Definiti

Requirements are expre variables in terms of 6 criteria: uncertainty, horizontal resolution, vertical resolution, observing cycle, timeliness, and stability (where appropriate). For each of these criteria the table indicates 3 values determined by experts:

- ⇒ The "threshold" is the minimum requirement to be met to ensure that data are useful
- → The "goal" is an ideal requirement above which further improvements are not necessary
- → The "breakthrough" is an intermediate level between "threshold" and "goal" which, if achieved, would result in a significant improvement for the targeted application. The breakthrough level may be considered as an optimum, from a cost-benefit point of view, when planning or designing observing systems.

The "uncertainty" characterizes the estimated range of observation errors on the given variable, with a 68% confidence interval (1 σ).

Export

Vertical dimension

This table lists all layers sorted by domain. In OSCAR, a 'layer' refers to a range of altitude or depth where a physical variable is measured and a requirement for this variable is applicable. This concept allows assigning different requirements for the same variable depending on the considered altitude or depth.

List of vertical Layers and horizontal Coverages

Domain	Acronym	Full name
Atmosphere	TC TrC HS&M LS HT LT Near Surface Cloud-top TOA LoThermo HiThermo	Total column Troposphere column High stratosphere and mesosphere Low stratosphere High troposphere Low troposphere At the surface (in the air) At the cloud top surface Top of the atmosphere Low Thermosphere (From 100 km to 200 km altitude) High Thermosphere (From 200 to about 500 km altitude)
Ocean	Sea surface Bulk Upper oc Deep oc	Surface of the ocean Bulk layer (ocean sub-surface) Upper ocean Deep ocean
Terrestrial	Land surface Root Deep soil Interior	Land surface Root region of the soil Deep soil layer Interior earth

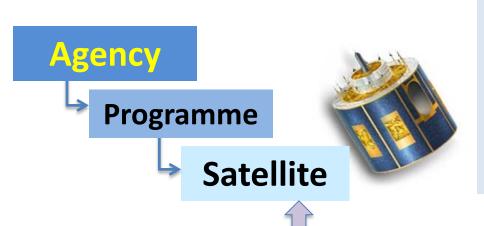
Horizontal dimension

This table lists all 'horizontal coverage' types used in OSCAR to further specify where a specific Requirement is applicable, e.g only over the oceans, at specific points (Airports), regionally or globally.

<u> </u>	
Name	Definition
Global	Applicable globally
Global ocean	Globally applicable to oceans and ocean surfaces
Global land	Globally applicable to land surfaces and over land surfaces
Costal areas	Globally applicable to coastal areas
Regional	Applicable in specific WMO regions as defined in "Comments"
Sub- regional	Applicable in specific areas of typically 1000*1000 km to be defined in "Comments"
Local	Applicable in specific areas of typically 100 *100 km to be defined in "Comments"
Point	Applicable at specific locations, e.g. Airports, to be defined in "Comments"

OSCAR/Space Database System

1. Factual information on satellites and instruments ("capabilities")


- 81 agencies
- 673 satellites
- 927 instruments

2. Assessment of instruments, and Gap Analyses ("analysis and review")

- Mapping instruments to measured variables
- "Gap Analysis" by measured variable, or by type of mission
- The built-in Expert system will infer the prioritized results?????

(Part 1) Looking-up information

- Name, purpose
- Mass, power
- Orbit (type, alt, ECT, longitude)
- Launch date, end date, status
- Data access, telecom frequencies

Payload status

- Instrument status, dates
- Link to calibration events

Instruments

- Name, purpose
- Mass, power
- Type, description, scan mode
- Resolution, FOV, coverage
- Status
- Spectral characteristics

Looking-up Satellite Programme

selecting "Programmes" from Top Page of the OSCAR/Space

Space-based Capabilities (OSCAR/Space)

This section contains details of environmental satellite missions, instruments and other related information. It also provides expert assessments on the relevance of instruments for fulfilling some WMO pre-defined capabilities (see <u>list of mission types</u>) and the measurement of particular physical variables (see <u>See Gap analyses by variable or by type of mission</u>)

The Oscar/Space section is managed by the WMO Space Programme Office. See the WMO Space Programme website for more information.

Last update of OSCAR/Space: 2016-09-22

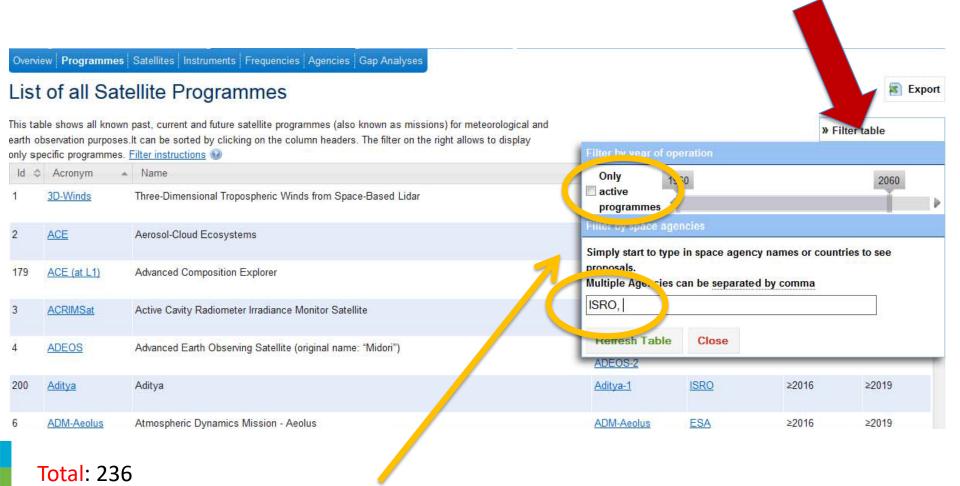
How to get started with OSCAR/Space?

- ⇒ Using the "Quick Search"
 - The "quick search" is present on every page at the right end of the menu bar. Please type e.g. the name of a satellite, instrument or variable. The system will then automatically suggest some items, which you can directly select in the drop down menu.
- Using the top menu
 - From the top menu, you can select the full tables of satellites, instruments, programmes etc. These tables can then be sorted and filtered according to your criteria.

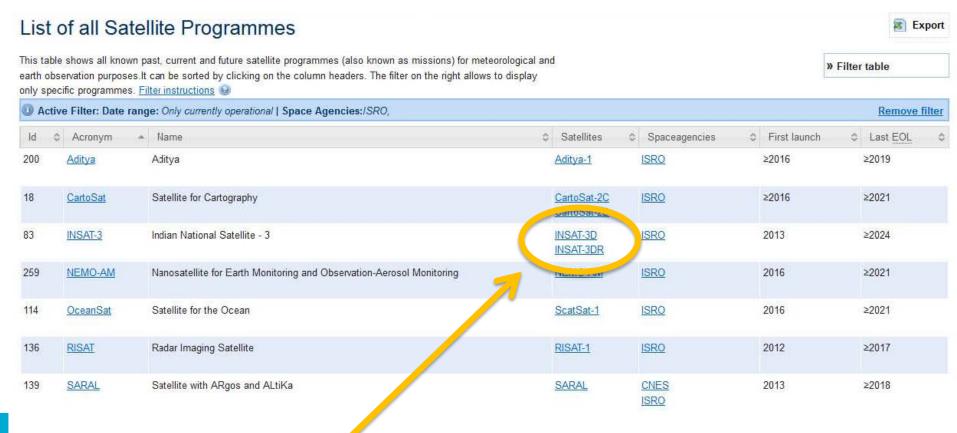
From any page, you can use the hyperlinks to navigate between your items of interest. The quick search and top menu are available from all pages.

For more details on the functionality and a video tutorial, please consult the Help page

Note: This section is currently pending expert review.

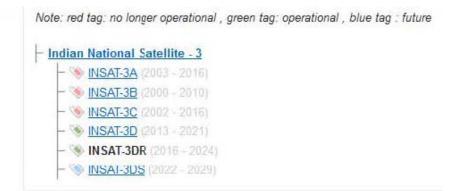

Additional related information

- Information and links relating data access are integrated in OSCAR. Access to low-level data is described on the <u>Data access page</u>. Satellite imagery and derived products can be accessed through the <u>Product Access Guide</u>. An overview of <u>related software and processing tools</u> is also available.
- WMO-CGMS Virtual Laboratory for education and training in satellite meteorology (VLab), a global network of specialized training centres provides valuable information in the area of training and education.


Satellite Programmes

Example Filter: ISRO, currently active programmes

Satellite Programmes: ISRO, active programmes

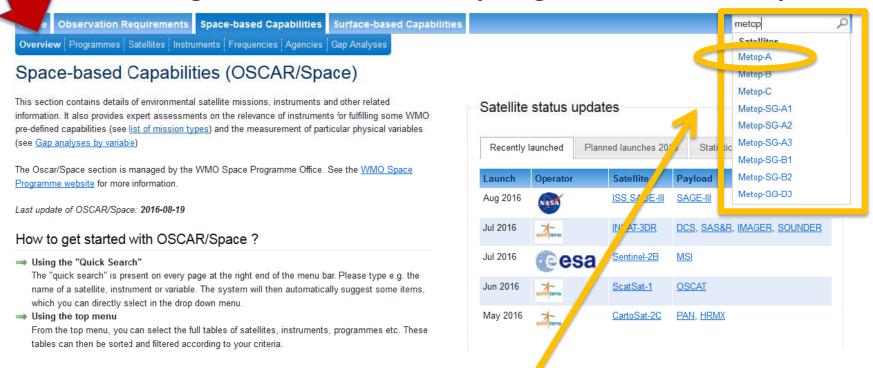

Example Satellites: INSAT-3DR

Satellite: INSAT-3DR

Satellite Payload

All known Instruments flying on INSAT-3DR

Acronym	Full name	
DCS	Data Collection Service	
SAS&R	Advanced Aided Search & Rescue	
IMAGER	INSAT imager	
SOUNDER	INSAT Sounder	


Show instrument status and calibration

Satellite Field of View

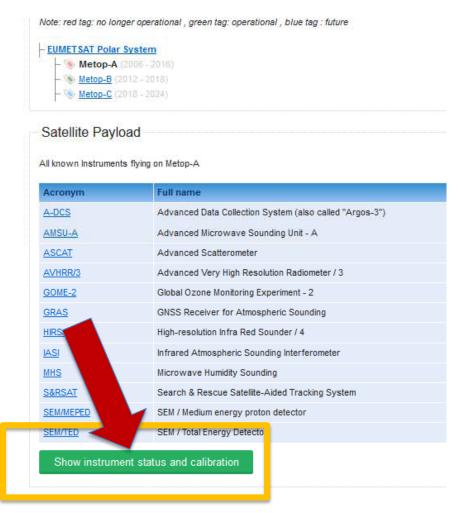
Estimate of the satellite's footprint, assuming a zenith angle of 75 $^{\circ}$

Looking-up Payload status (example: Metop-A)

selecting "Overview" from Top Page of the OSCAR/Space

Search: Metop

(automatic dropdown menu after 2 typed letters)



Payload status, Calibration events Example: Metop-A

Space agency	EUMETSAT, ESA
Status	Operational
Details on Status (as available)	LRPT failed soon after launch, one AHRPT transmitter failed 6 months later. Global data disseminated by EUMETCast became the primary dissemination system. As of Sept 2008 the redundant AHRPT unit is utilised for a partial

coverage enabling the recention and retranomicoing of MDT data by

Payload status, Calibration events Example: Metop-A

Calibration and

www.eumetsat.int

www.eumetsat.int

events

All known instruments flying on Metop-A

Instrume	nt Full name	Start date	EOL date
A-DCS	Advanced Data Collection System (also called "Argos-3")	15 May 2007	≥2016 *
AMSU-A	Advanced Microwave Sounding Unit - A	15 May 2007	≥2016 *
ASCAT	Advanced Scatterometer	15 May 2007	≥2016 *
AVHRR/3	Advanced Very High Resolution Radiometer / 3	15 May 2007	
GOME-2	Global Ozone Monitoring Experiment - 2	METOP-A	MHS
GRAS	GNSS Receiver for Atmospheric Sounding		
HIRS/4	High-resolution Infra Red Sounder / 4	INSTRUME	NT SPE
IASI	Infrared Atmospheric Sounding Interferometer	► WMC	OSCA
MHS	Microwave Huminity Sounding		
S&RSAT	Search & tellite-Aided Tracking System	INSTRUME	NT EVE
SEM/MEPEI	SEM / Medium en detector	 ▶ Meto 	p-A MH
SEM/TED	SEM / Total Energy Detect	DATA OUT	AGES

¹⁵ May 2007 ≥2016 * METOP-A MHS

INSTRUMENT SPECIFICATIONS

Active

Degraded

WMO OSCAR (Satellite Instrument Specifications)

INSTRUMENT EVENTS

Metop-A MHS List of Instrument Events: User Notification Service

DATA OUTAGES

Availability of data in the Data Centre

INSTRUMENT MONITORING

This information is currently not available on-line

RELEVANT DOCUMENTS

TITLE	TYPE	REFERENCE	VER
MHS Level 1 Product Generation Specification	PGS	EUM.EPS.SYS.SPE.990006	6
MHS Level 1 Product Format Specification	PFS	EPS.MIS.SPE.97229	7E
			▶ Tor

The AMSU-A channel 50.3 and 54.95 GHz are experiencing increasing noise

eumetsat.int

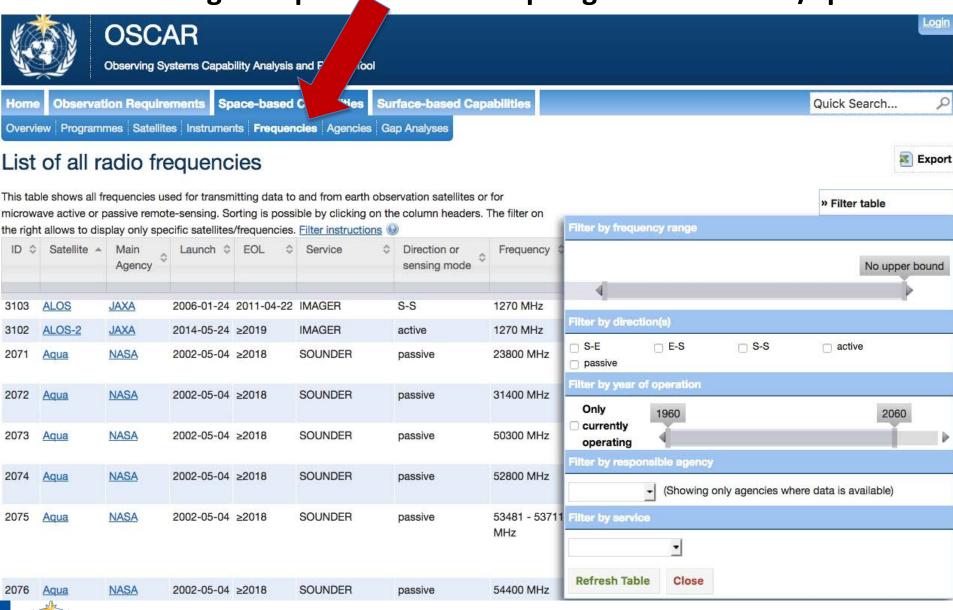
Landing page

and have exceeded the threshold in September 2013.

* The information in this field is estimated or assu

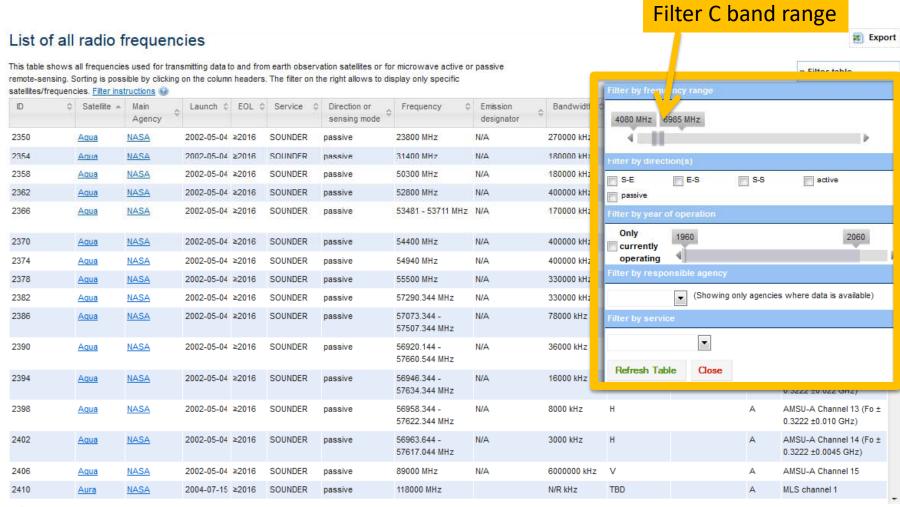
Direct Link to GSICS (in planning)

MO OMM

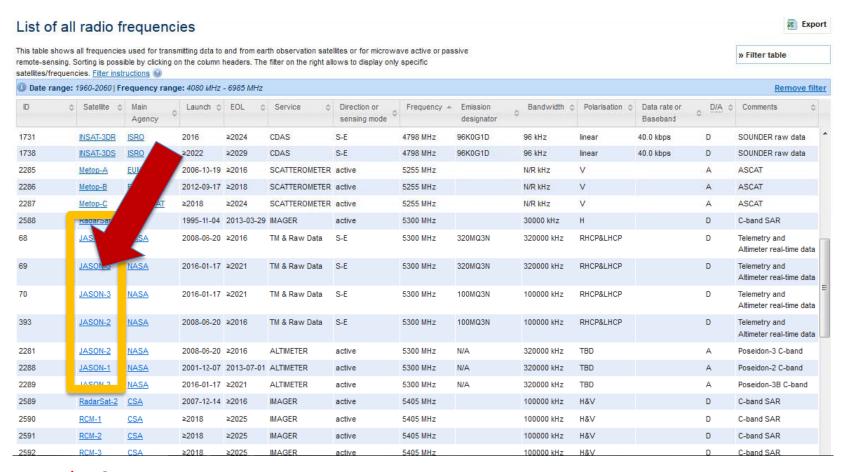

for Frequency management

"What is the potential impact on Jason missions of proposals for sharing 5350-5470 MHz (C band) with commercial broadband providers?"

"Give me all satellites that use C band, for sensing or for telecommunication"



selecting "Frequencies" from Top Page of the OSCAR/Space



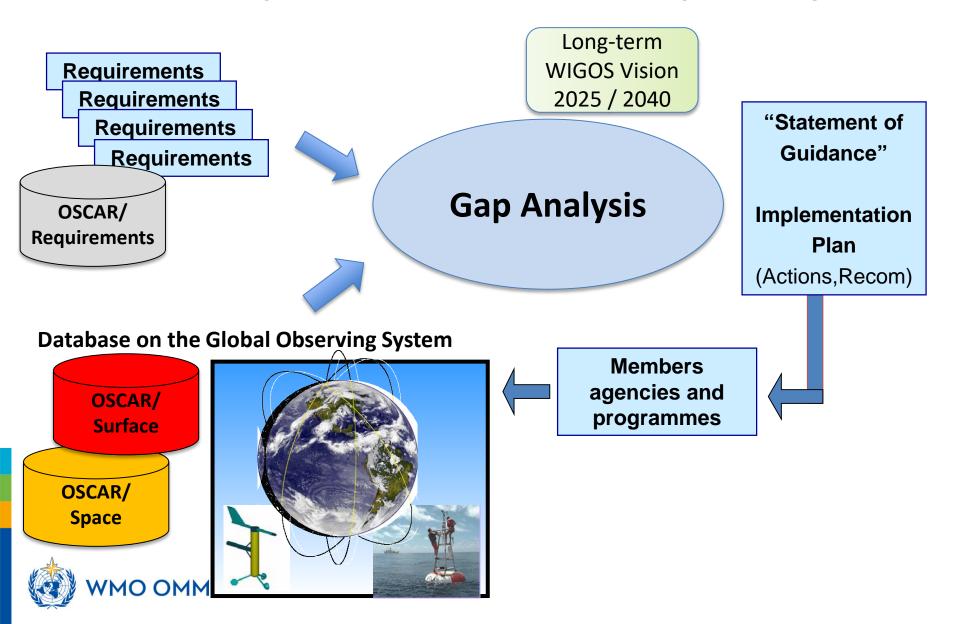
Information for frequency management

Information for frequency management: Sensing and telecom frequencies

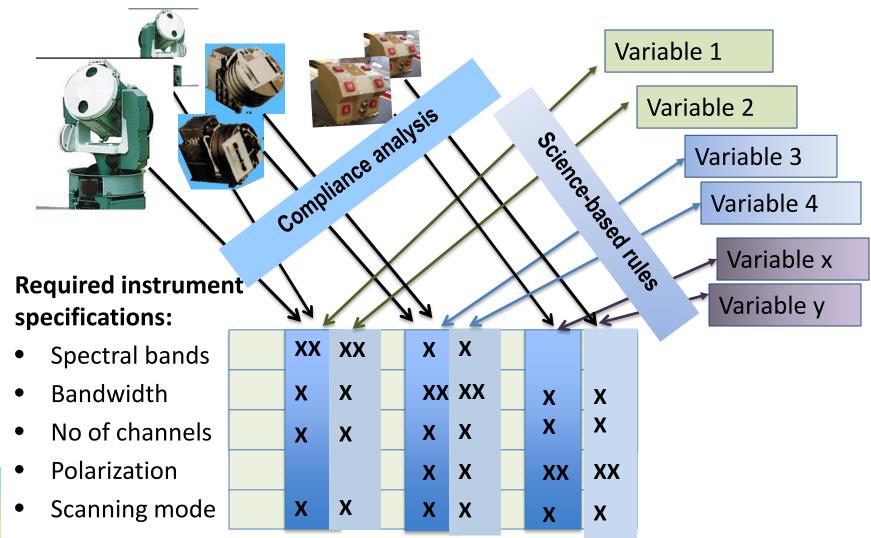
Frequency information: Jason-3

Telecommunication frequency or microwave sensing channel information Hide expert details

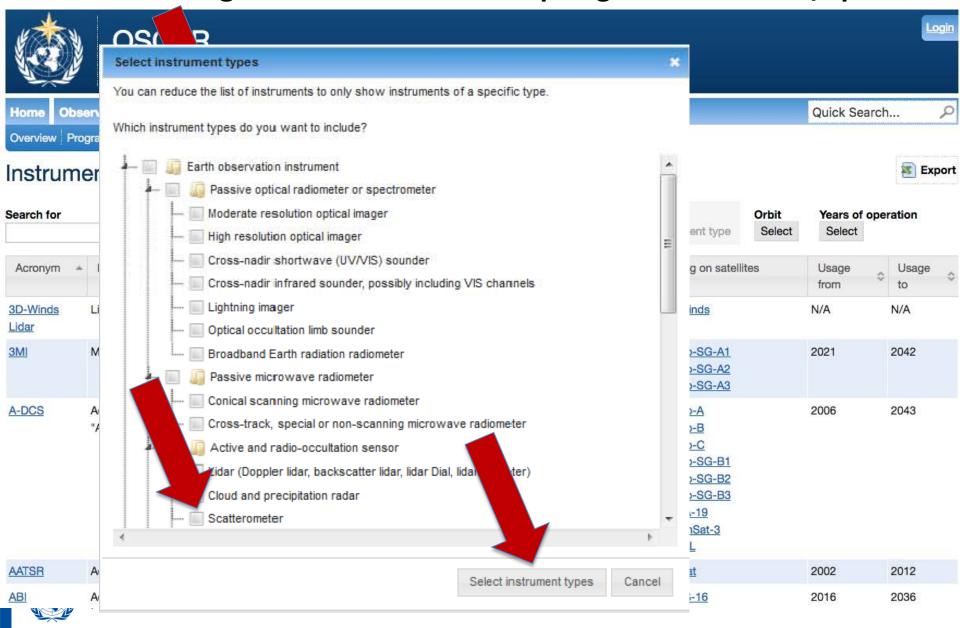
is s	1000 SQV-QV	F22	25 T.S. C. 250 T.S.	The second	SERVE W. E.	1 -5 -61		(20)
Service	Dir or Mode	Frequency	Emission designator	Bandwidth	Polarisation	D/A	Data rate or Baseband	Comments
TM & Raw Data	S-E	5300 MHz	320MQ3N	320000 kHz	RHCP&LHCP	D		Telemetry and Altimeter real-time data
TM & Raw Data	S-E	5300 MHz	100MQ3N	100000 kHz	RHCP&LHCP	D		Telemetry and Altimeter real-time data
TM & Raw Data	S-E	13575 MHz	320MQ3N	320000 kHz	RHCP&LHCP	D		Telemetry and Altimeter real-time data
DORIS	E-S	401.25 MHz	23K0G1D	23 kHz	RHCP	D		Precise positioning by DORIS
DORIS	E-S	2036.25 MHz	95K0G1D	95 kHz	RHCP	D		Precise positioning by DORIS
Command	E-S	2040.493 MHz	8K00G2D	8 kHz	RHCP	D		Commands
SOUNDER	passive	18700 MHz	N/A	N/R kHz	TBD	Α		AMR channel 1
SOUNDER	passive	23800 MHz	N/A	N/R kHz	TBD	Α		AMR channel 2
SOUNDER	passive	J-FUUU IVII	N/A	N/R kHz	TBD	Α		AMR channel 3
ALTIMETER	active	5300 MHz	N/A	320000 kHz	TBD	Α		Poseidon-3B C-band
ALTIMETER	active	13575 MHz	N/A	320000 kHz	TBD	Α		Poseidon-3B Ku-band


(Part 2) Assessments: Gap Analyses

Two sides of the same relationship:


- Which "variables" can be measured with a given instrument? Which capability does the instrument contribute to?
- Which "instruments" can measure a given variable? Which instruments are responding to the WMO Vision?...and during which period of time?

'OSCAR/Space' is a tool for 'Gap Analysis'

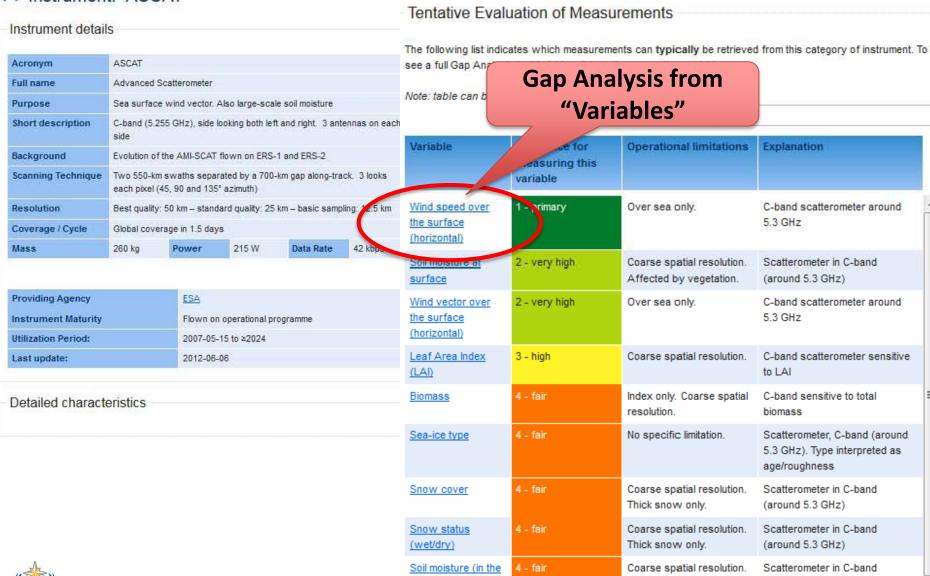

Instrument-variable mapping principle

• Etc..

Gap Analysis from "Instruments": Scatterometer selecting "Instruments" from Top Page of the OSCAR/Space

Overview Programmes Satellites Instruments Frequencies Agencies Gap Analyses

Instruments


Export

Search for	Agency	Instrument types Scatterometer	Spectral domain Expert search Select Select	Orbit Years of op Select Select	eration	
Acrony	Full Name	Providing ag	gency Instrument type	⇒ Flying on satellites	Usage from	♦ Usage to
AMI-S	Active Microwave Instrument - Scatterometer	ESA	Radar scatterometer	ERS-1 ERS-2	1991	2011
ASCAT	Advanced Scatterometer	ESA	Radar scatterometer	Metop-A Metop-B Metop-C	2006	2024
NSCAT	NASA Scatterometer	NASA	Radar scatterometer	ADEOS	1996	1997
OSCAT	OceanSat Scatterometer	ISRO	Radar scatterometer	OceanSat-2 OceanSat-3 OceanSat-3A ScatSat-1	2009	2024
RapidScat	Rapid Scatterometer	NASA	Radar scatterometer	ISS RapidScat	2014	2016
SASS	SeaSat-A Scatterometer System	NASA	Radar scatterometer	SeaSat	1978	1978
SCA	Scatterometer	ESA	Radar scatterometer	Metop-SG-B1 Metop-SG-B2 Metop-SG-B3	2022	2043
SCAT	Scatterometer	NSOAS	Radar scatterometer	HY-2A	2011	2027
/A						

Instrument: ASCAT

◆ Instrument: ASCAT

roots region)

Affected by vegetation.

(around 5.3 GHz), Assimilation

process required

Measurement timeline for Wind speed over the surface (horizontal) (Definition: Module of the horizontal component of the 3D wind vector)

Found 116 results																First	Pre	vious	1	2	3	N	ext	Last
Instrument	NRT?	Relevance	Satellite	Orbit	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027 2
MWRI (FY-3RM)		3 - high	FY-3RM-1														х	х	х	X	X	X		
MWRI (FY-3RM)		3 - high	FY-3RM-2																	х	X	х	Х	X
MADRAS (I)		4 - fair	Megha-Tropiques	20 °				×	х	x														
TMI		3 - high	TRMM	35 °	х	X	X	X	х	X	X	x												
DDMI		4 - fair	CYGNSS (8 sats)	35 °										Х	ж	ж	X	X						
SHIOSAI		4 - fair	COMPIRA	51 °												x	X	X	X	x	X			
Altimeter (COMPIRA)		5 - marginal	COMPIRA	51 °												x	x	X	X	x	x			
RapidScat		1 - primary	ISS RapidScat	51.6 °							X	X	X			2.								
GMI (core)	No	3 - high	GPM Core Observa	65 °							Х	х	х	Х	х									
SCAT (HY-2A)		1 - primary	HY-2C	66 °												x	X	X	X	X	X			
SCAT (HY-2A)		1 - primary	HY-2D	66 °													x	x	x	x	x	x		
SCAT (HY-2A)		1 - primary	HY-2F	66 °															x	x	x	x	х	x
SCAT (HY-2A)		1 - primary	HY-2G	66 °															x	x	x	x	x	x
ALT (HY-2A)		5 - marginal	HY-2C	66 °												x	X	X	X	X	x			
ALT (HY-2A)		5 - marginal	HY-2D	66 °													x	x	X	ж	x	x		
ALT (HY-2A)		5 - marginal	HY-2F	66 °															×	x	x	x	X	X
ALT (HY-2A)		5 - marginal	HY-2G	66 °															X	x	x	x	x	x
NRA		5 - marginal	TOPEX-Poseidon	66 °																				
Poseidon-2		5 - marginal	JASON-1	66 °	X	X	X	X	Х	x														
Poseidon-3	Yes	5 - marginal	JASON-2	66 °	×	x	ж	ж	ж	x	X	ж	X	X	X									
Poseidon-3B	Yes	5 - marginal	JASON-3	66 °									ж	x	x	х	x	ж						
SRAL (JASON)		5 - marginal	JASON-CS-A	66 °													x	x	X	X	X	x	X	x
SRAL (JASON)		5 - marginal	JASON-CS-B	66 °												12							x	x
SSALT		5 - marginal	TOPEX-Poseidon	66 °																				
KaRIN		4 - fair	SWOT	78 °														Х	X	X	X			
Altimeter		5 - marginal	SWOT	78 °														x	×	X	ж			
SHF		3 - high	Meteor-P1	81.2°																				
SHF		3 - high	Meteor-P2	81.2°																				
MTVZA-OK (MW)		2 - very high	SICH-1M	82.5 °																				
Delta-2D		3 - high	Okean-O-1	82.5 °																				
SIR AL			00	00.0																				

Relevance

Measurement timeling

r Wind speed over the surface (horizontal)

Definition: Module of the horizo

omponent of the 3D wind vector.

Hint: Move around in the timelin

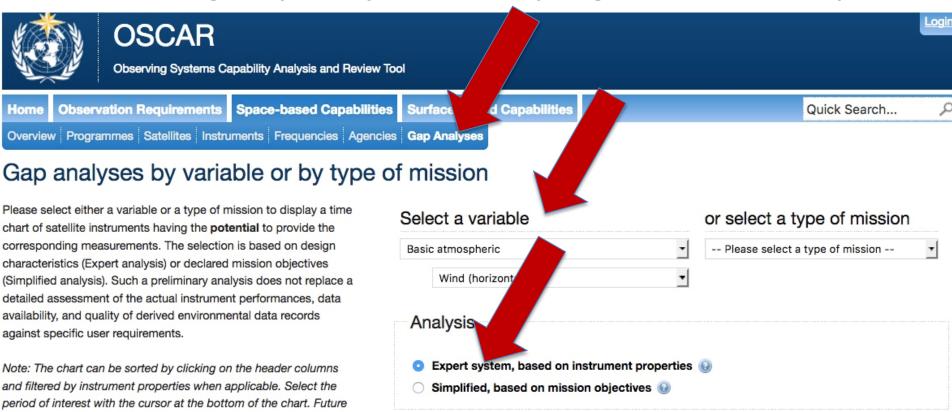
crolling up, down, left or right.

Gap analysis

Found 116 results														First	Pr	evious		1	2 3	N	lext	Las
Instrument	NRT?	Relevance	Satellite	Orbit	2008	2009 2	010 201	1 2012	2013 20	014 2	015 2	016 201	2018	2019	2020	2021	2022	2023	3 2024	2025	2026	2027
RapidScat		1 - primary	ISS RapidScat	51.6 °						x	x o	(
SCAT (HY-2A)		1 - primary	HY-2C	66 °										x	X	X	x	X	X			
SCAT (HY-2A)		1 - primary	HY-2D	66 °											x	x	x	x	X	X		
SCAT (HY-2A)		1 - primary	HY-2F	66 °													ж	x	x	x	x	X
SCAT (HY-2A)		1 - primary	HY-2G	66 °													x	x	X	x	x	x
SASS		1 - primary	SeaSat	108°																		
SeaWinds		1 - primary	QuikSCAT	06:00 asc	X	X																
CAT (Meteor-M N3)		1 - primary	Meteor-M N3	12:00 asc												X	x	X	X	X	x	
VindRAD		1 - primary	FY-3E	06:00 desc									X	X	X	x	x	X				
VindRAD		1 - primary	FY-3H	06:00 desc												X	x	x	X	X	x	X
CAT (HY-2A)		1 - primary	HY-2A	06:00 desc			,	x x	X	x	X	x x	X									
CAT (HY-2A)		1 - primary	HY-2B	06:00 desc									х	ж	x	X	X	ж				
CAT (HY-2A)		1 - primary	HY-2E	06:00 desc											x	x	x	x	X	X		
CAT (CFOSAT)		1 - primary	CFOSAT	07:00 desc									×	×	x	X	X					
CAT (CFOSAT)		1 - primary	CFOSAT follow-on	07:00 desc													x	х	X	x	x	X
SCAT		1 - primary	ScatSat-1	08:44 desc								X X	X	x	X	X						
SCAT	Yes	1 - primary	Metop-A	09:30 desc	X	X	x x	X	X	x	X	x x	x									
SCAT	Yes	1 - primary	Metop-B	09:30 desc				x	X	x	x	x x	X									
SCAT		1 - primary	Metop-C	09:30 desc									х	ж	x	х	x	ж	X			
CA (Scatterometer)		1 - primary	Metop-SG-B1	09:30 desc													x	X	X	x	x	X
SCA (Scatterometer)		1 - primary	Metop-SG-B2	09:30 desc															0.			
SCA (Scatterometer)		1 - primary	Metop-SG-B3	09:30 desc																		
AMI-SCAT		1 - primary	ERS-1	10:30 desc																		
AMI-SCAT		1 - primary	ERS-2	10:30 desc	X	X	x x															
NSCAT		1 - primary	ADEOS	10:30 desc																		

Flag instrument issue indicates "degradion"

Gap analysis



Matron 11 M2 4

00-20 dese

MD/74 GV

selecting "Gap Analysis" from Top Page of the OSCAR/Space

Measurement timeline for Wind (horizontal)

missions which are not firmly planned are shaded with stripes. A warning icon (1) indicates degraded satellite: hover over the icon for details. The chart is followed by a table of all potentially relevant

Definition:

instruments.

3D field of the horizontal vector component (2D) of the 3D wind vector. The acuracy is meant as vector error, i.e. the module of the vector difference between the observed vector and the true vector.

Found 319 readts											Fi	irst	Prev	ious	1	2	3	4	5	Nex	d	Last
Instrument	NRT?	Relevance	Satellite	Orbit	19	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	202
MERSI-2	1	4 - fair	FY-3RM-1													х	х	х	х	х	х	
MERSI-2		4 - fair	FY-3RM-2															(Barrier)	х	x	x	
SSCC		5 - marginal	ATS-1	150°W																		
ABI		2 - very high	GOES-T	137°W												Х	Х	Х	Х	Х	X	
IMAGER (GOES 8-11	1	3 - high	GOES-9	135°W											7							
IMAGER (GOES 8-11		3 - high	GOES-10	135°W																		
IMAGER (GOES 8-11		3 - high	GOES-11	135°W	(х	х															
VISSR		4 - fair	GOES-1	135°W																		
VISSR	1	4 - fair	GOES-3	135°W																		
VISSR		4 - fair	SMS-2	135°W																		
IMAGER (GOES 12-1	Yes	3 - high	GOES-15	134.9°W		х	х	х	х	х	х	х	х	Х	Х	х						
IMAGER (GOES 12-1	Yes	3 - high	GOES-14	104.2°W	X	х	x	х	x	x	х	x	х	х								
VHRR (ATS)		4 - fair	ATS-6	94°W																		
ABI		2 - very high	GOES-17	89.5°W										х	Х	Х	Х	Х	Х	Х	Х	
ABI		2 - very high	GOES-16	75.2°W								7	хх	x	х	x	x	x	x	х	х	
<u>ABI</u>		2 - very high	GOES-U	75°W												Side				613	х	
IMAGER (GOES 12-1		3 - high	GOES-12	75°W	(X																
IMAGER (GOES 8-11		3 - high	GOES-8	75°W																		
MVIRI		3 - high	Meteosat-3 (X-AD)	75°W																		
VISSR		4 - fair	GOES-2	75°W																		
VISSR	1	4 - fair	SMS-1	75°W																		
IMAGER (GOES 12-1		3 - high	GOES-12 (S-Ameri	60°W		X	Х	х	х													
IMAGER (GOES 8-11		3 - high	GOES-10 (S-Ameri	60°W	(
IMAGER (GOES 12-1	Yes	3 - high	GOES-13	59.8°W	(х	Х	Х	х	х	х	х	х	х								
MVIRI		3 - high	Meteosat-3 (ADC)	50°W																		
MSSCC		5 - marginal	ATS-3	45°W																		
MSU-GS		3 - high	Electro-L N1	29.6°W			х	х	х	х	х	х										
IRFS-GS		2 - very high	Electro-M N1	14.5°W																	X	
MSU-GSM	1	2 - very high	Electro-M N1	14.5°W																	х	
MSU-GS		3 - high	Electro-L N3	14.5°W										х	х	х	Х	х	Х	х	х	

OSCAR/Space Maintenance Scheme

Maintenance and Support: Outlook

Two main tasks for OSCAR/Space:

- (1) Updating facts
- (2) Keep under review assessments, functions, rules, interfaces

Under supervision of WMO CBS expert teams, e.g. ET-SAT, IPET-SUP, IPT-SWeISS, and consistent with overall OSCAR development (with OSCAR/Surface and OSCAR/Requirement)

WMO Space Programme office plans to establish:

- OSCAR/Space Support Team (for task 1)
- OSCAR/Space Science and Technical Advisory Team (task 2)

Maintenance and Support Scheme for OSCAR/Space

ET-SAT

Expert Team on Satellite Systems

IPET-SUP

Inter-Programme Expert Team on Satellite Utilization and Products

IPT-SWeISS

Inter-Programme Team on Space Weather Information, Systems and Services

WMO Expert Teams

WMO Space Programme Office

OSCAR Project Board

OSCAR/Space

Support Team (O/SST) for maintenance

- CGMS Members, Observers
- Other partners

OSCAR/Space

Science and Technical Advisory Team (O/SSAT)

- CGMS International Science Working Groups:

ITWG -Sounding

IWWG - Winds

IPWG - Precipitation

IROWG – Radio Occultation

ICWG - Clouds

- WMO GSICS, SCOPE-CM, SCOPE-NC

IWWG's Contributions to OSCAR/Space

Questions/Advices from IWWG for "AMVs (Horizontal) Capabilities" in OSCAR/Space <u>Gap Analyses by Variable (0/2)</u>

http://www.wmo-sat.info/oscar/gapanalyses?view=179

Questions/Advices	Comments
What are the definitions for the various Relevance Designations (very high, high, fair, etc) and do they exist somewhere on the OSCAR site? Knowing these definitions would enable more consistent Relevance labelling of the various observation sources.	The ratings provide a qualitative idea of the <u>relative</u> achievable performance of the retrievals from instruments of different types and characteristics. The rating is a "blending" of several elements: the uncertainty, the vertical resolution, and the frequency and spatial resolution of the retrieved measurement in comparison with the space-time variability of the geophysical parameter. It is planned to add the "Rating criteria"
	to the Gap analysis by Variable" in order to make the User aware of the background for the quoted rates.

Questions/Advices from IWWG for "AMVs (Horizontal) Capabilities" in OSCAR/Space Gap Analyses by Variable (1/2)

http://www.wmo-sat.info/oscar/gapanalyses?view=179

Questions/Advices Comments - Relevance of ABI, AHI, FCI is marked as "Very high" in The current rating criteria are: contrast to the previous GOES or MTSAT imagers or SEVIRI Doppler lidar 1. (which are "high")? The capabilities or quality of ABI, AHI and Hyperspectral sounder in GEO; OR FCI might be better (although not necessarily in a major way Imager in GEO or Molniya with for winds), but it is thought that the relevance for AMVs is channels in VIS and TIR at 6-8, 10the same for all these instruments and should be 'very high'. 13 and 13.3 μm Imager in GEO or Molniya with channels in VIS and TIR at 6-8 and - Relevance is marked as "fair" for MODIS, VIIRS and MetImage, and "marginal" for AVHRR. However, both 10-13 μm MODIS, VIIRS and AVHRR AMVs are currently assimilated in TIR imager in LEO with channels at NWP models. So it is thought that 'high' or 'very high' rating 6-8 and 10-13 μm; OR Imager in GEO with channels in VIS and TIR should be more appropriate, even if it is understood that VIIRS and AVHRR might be rated lower than MODIS or at 10-13 µm; OR High-spatial-METImage due to the lack of availability of WV channels for reolution multi-angle VIS example. In fact METImage is very similar to SEVIRI (VIS, IR radiometer in LEO; OR Very-high and WV channels used for AMVs) and the relevance to spectral resolution limb sounding extract the winds is then rather similar for the 2 instruments spectrometer for oxygen lines in even if the coverage is different. In fact coverage of GEO and the VIS and NIR ranges LEO are seen as complementary and be not rated as more or VIS imager in GEO; OR TIR imager at 10-13 µm in LEO less important.

Example of Rules (rating value is «subjective»)

Variable: Atmospheric temperature

Instrument type	Main relevant Property	Rating	Operational limitations
IR radiometer	No. of channels in the 15 μm band (in LEO)	3.4	Cloud sensitive, coarse vert. resolution
	No. of channels in the 15 μm band (in GEO)	3.3	Cloud sensitive, coarse vert. resolution
	No. of channels in the 4.3 and 15 μm bands (in LEO)	3.1	Cloud sensitive, coarse vert. resolution
	No. of channels in the 4.3 and 15 μm bands (in GEO)	3.0	Cloud sensitive, coarse vert. resolution
IR spectrometer	Spectral resolution in the 15 µm band (in LEO)	2.2	Cloud sensitive
	Spectral resolution in the 15 µm band (in GEO)	2.1	Cloud sensitive
	Spectral resolution in the 4.3 and 15 µm bands (in LEO)	1.3	Cloud sensitive
	Spectral resolution in the 4.3 and 15 µm bands (in GEO)	1.0	Cloud sensitive
MW radiometer	No. of channels in the 54 GHz band (conical scanning)	2.3	No specific limitation
	No. of channels in the 54 and 118 GHz bands (conical scanning)	2.0	No specific limitation
	No. of channels in the 54 GHz band (cross-track scanning)		No specific limitation
	No. of channels in the 54 and 118 GHz bands (cross-track scanning)	1.1	No specific limitation
Limb sounder	Short-wave spectrometry in occultation	5.1	Daylight, high atmosphere only
	Short-wave spectrometry by mechanical/electronic scanning	5.0	Daylight, high atmosphere only
	IR spectrometry	4.1	High atmosphere only
	Millimetre-submillimetre wave spectrometry	4.0	High atmosphere only
R.O. sounder	No. of soundings / day (single satellite)	3.2	Inaccurate in low troposphere
	No. of soundings / day (satellite cluster)	1.2	Inaccurate in low troposphere

Requests from IWWG for "AMVs (Horizontal) Capabilities" in OSCAR/Space <u>Gap Analyses by Variable (2/2)</u>

http://www.wmo-sat.info/oscar/gapanalyses?view=179

Requests	Accepted Proposal
Operational limitation is marked as "Polar Regions only" for MODIS, VIIRS, MetImage, and AVHRR. AMVs using these data are extracted up to 50 deg latitude (single mode AVHRR and Leo-Geo) and have a global coverage for dual Metop AVHRR operations. It is proposed to replace the operational limitation "Polar Regions only" by "High latitudes" and to precise that the coverage is global for Dual operations for AVHRR and METImage.	"Polar regions only" is now re-worded as "Limited to high latitudes".
3D winds are presently produced in a demonstration mode at CIMSS from AIRS instrument. It is proposed to add AIRS in the list and to set the relevance to "marginal" or "fair".	The addition of variable "Wind (horizontal)" in the capability of hyperspectral sounders in LEO was implemented and reviewed by IWWG.

Questions/Advices from IWWG for "AMVs (Horizontal) Capabilities" in OSCAR/Space <u>Multi-purpose VIS/IR from GEO</u>

http://www.wmo-sat.info/oscar/observingmissions/view/2

Questions/Advices	Comments
AMVs are mentioned in the #1 rating, as well as the #4 rating. This is a bit confusing. AMVs are mentioned in all the ratings, which is fine if AMVs can be produced from the available observations described in each rating.	AMV is possible with different level of performances, depending on the available channels. The rating, however, is determined by the set of <u>all</u> the Variables retrievable from the specified set of channels, not AMV only.
The "red" colour code designation says: "VIS/IR radiometer with >=1 channel(s) in VIS, in the TIR window ~ 11 μ m and (possibly) in the TIR water vapour 6.3 μ m band. Basic operational cloud and cloud motion monitoring limited to daylight." The last sentence is only true IF only a VIS band is present, but the "red" colour designation seems to indicate the availability of 11um window observations.	This rating category refers to instruments with a minimal number of channels, but inclusive of VIS, therefore only possible in daylight. AMV are included, provided that also there is IR (for height assignment).

Questions/Advices from IWWG for "AMVs (Horizontal) Capabilities" in OSCAR/Space Multi-purpose VIS/IR from LEO

http://www.wmo-sat.info/oscar/observingmissions/view/1

Questions/Advices	Comments	
AMVs aren't mentioned.	AMV is not mentioned	
AMVs are now extracted from several	here because not driving	
LEO satellites (MODIS, AVHRR, VIIRS,	for the rating of the	
MISR) and presently used in NWP	mission "Multi-purpose	
models for high latitude areas. They will	VIS/IR from LEO". It	
be extracted in the future from at least	appears, however, listed	
EPS-SG METImage and S3/SLSTR.	and rated under each	
AMVs must appear in the multi-purpose	instrument equipped with	
VIS/IR imagery from LEO list.	the appropriate channels.	

<u>Note</u>: "Multi-purpose VIS/IR from GEO" and "Multi-purpose VIS/IR from LEO" will be merged in future updating, and the rating definition will be rearranged. <u>IWWG comments will be taken into account</u>

Requests from IWWG for "AMVs (Horizontal) Capabilities" in OSCAR/Space IR temperature/humidity sounding from LEO

https://www.wmo-sat.info/oscar/observingmissions/view/3

Requests	Accepted Proposal
'wind profile in clear air' is mentioned	The addition of variable
for GEO but not for LEO. 3D winds are	"Wind (horizontal)" in the
presently derived in a demonstration	capability of hyperspectral
mode from AIRS at CIMSS and 3D winds	sounders in LEO was
are also planned to be extracted from	implemented and
Metop IASI. The coverage is limited to	reviewed by IWWG
high latitudes. It is proposed to add the	
'wind profile in clear air' mention also	
for LEO IR sounders.	

Questions/Advices from IWWG for "AMVs (Horizontal) Capabilities" in OSCAR/Space <u>Observation Requirement Variable: Wind (horizontal)</u>

http://www.wmo-sat.info/oscar/variables/view/179

Questions/Advices	Comments
What are definitions of "High" "Low" Troposphere? Perhaps, Mid troposphere should be included as one of the layer designations	The terms "Lower troposhere", "Higher troposphere", "Lower stratoshere" and "Higher stratosphere and Mesosphere" have been agreed long ago, accounting for the variability with latitude, the vertical resolution generally achievable by remote sensing, and in order to simplify the User work of establishing requirements. According to CIMO, the conventional thresholds are: LT: surface-500 hPa; HT: 500-250 hPa; LS: 250-30 hPa; HS&M:30-0.01 hPa

Questions/Advices from IWWG for "AMVs (Horizontal) Capabilities" in OSCAR/Space Instruments Section

Questions/Advices	Comments
Imager (GOES-12-15)	- The description "Full disk every
- Coverage / Cycle: Full disk is	30 min. Limited areas in
every 3 hours. Northern and	correspondingly shorter time
Southern Hemisphere sectors	intervals" refers to the instrument
every 30 minutes. Continental	capability. The IWWG comment
US coverage every 15 minutes	refers to operating modes, that are
(nominal operations) or 7.5	not described,
minutes (rapid scan operations)	
- GOES-13 satellite should be	- GOES-13 is now back-up, at
tagged green since it is	59.8°W.
currently an operational	
satellite)	

Properties and Rules in OSCAR/Space

- For the purpose of identifying which variable can be retrieved from an instrument, and with which quality, an appropriate set of the main instrument characteristics is extracted as 'Properties'.
- A variable is derived from the instrument Properties by means of the retrieval algorithm. In OSCAR/Space, the linkage between the variable and the appropriate Properties is expressed as 'Rules'.
- For one variable, many Rules are applicable, function of:
 - the instrument type, i.e. the physical principle exploited
 - the specific set of Properties having a bearing on the retrieval
 - operational characterics of the satellite hosting the instrument.
- The current number of Rules defined in OSCAR/Space is over 2720. The number of Properties is over 290.

Example of Rules (rating value is «subjective»)

Variable: Atmospheric temperature

Instrument type	Main relevant Property	Rating	Operational limitations
IR radiometer	No. of channels in the 15 μm band (in LEO)	3.4	Cloud sensitive, coarse vert. resolution
	No. of channels in the 15 μm band (in GEO)	3.3	Cloud sensitive, coarse vert. resolution
	No. of channels in the 4.3 and 15 μm bands (in LEO)	3.1	Cloud sensitive, coarse vert. resolution
	No. of channels in the 4.3 and 15 μm bands (in GEO)	3.0	Cloud sensitive, coarse vert. resolution
IR spectrometer	Spectral resolution in the 15 µm band (in LEO)	2.2	Cloud sensitive
	Spectral resolution in the 15 µm band (in GEO)	2.1	Cloud sensitive
	Spectral resolution in the 4.3 and 15 µm bands (in LEO)	1.3	Cloud sensitive
	Spectral resolution in the 4.3 and 15 µm bands (in GEO)	1.0	Cloud sensitive
MW radiometer	No. of channels in the 54 GHz band (conical scanning)	2.3	No specific limitation
	No. of channels in the 54 and 118 GHz bands (conical scanning)	2.0	No specific limitation
	No. of channels in the 54 GHz band (cross-track scanning)		No specific limitation
	No. of channels in the 54 and 118 GHz bands (cross-track scanning)	1.1	No specific limitation
Limb sounder	Short-wave spectrometry in occultation	5.1	Daylight, high atmosphere only
	Short-wave spectrometry by mechanical/electronic scanning	5.0	Daylight, high atmosphere only
	IR spectrometry	4.1	High atmosphere only
	Millimetre-submillimetre wave spectrometry	4.0	High atmosphere only
R.O. sounder	No. of soundings / day (single satellite)	3.2	Inaccurate in low troposphere
	No. of soundings / day (satellite cluster)	1.2	Inaccurate in low troposphere

Retrievable variable processing in OSCAR/Space

- The identification and qualification of the variables retrievable from an instrument makes use of a quasi-objective methodology.
- The variables have been selected on the basis of User requirements (by official committee and expert groups) and feasibility of observing from Space.
- Currently, OSCAR/Space manages 191 variables (122 for EO, 69 for SW).
- A variable can be retrieved from instruments of different types. The
 quality of the retrieval depends on the physical principle exploited by
 the type of instrument, and the specific instrument characteristics.
- The processing method evaluates which variables can (in principle) be retrieved from an instrument, and provides a rough rating of the pachievable guality.

51

Some Critical Areas in OSCAR/Space

Maintenance:

- it is very difficult to get the latest information on satellite status:
 - too many satellites continue to be listed as 'operational', whereas they are likely to be inactive, maybe since long;
 - o in cases of too long absence of fresh information, the status of the satellite is quoted as '*Unclear*';
 - the problem is amplified when moving to the status of the specific instruments flown on the satellite;
- the frequency plan information is often incomplete or missing.

Development and maintenance:

 further development and maintenance scheme of OSCAR/Space is being pursued, within a resource-limited context.

Need for cooperation:

MMO OMV

 contacts to ensure cooperation for maintenance and, possibly, development, have been established. The outcome of these initiatives is <u>basic</u> for the future of OSCAR/Space.

Information on OSCAR/Space

Most up-to-date and relevant is the User Manual http://www.wmo.int/pages/prog/sat/documents/OSCAR User Manual-2016-09-10.pdf

it is currently linked on the OSCAR homepage https://www.wmo-sat.info/oscar/

On the same page, we also have a flyer but it needs updating: http://www.wmo.int/pages/prog/sat/documents/oscar_broch_ure.pdf

7L30

Thank you

WORLD
METEOROLOGICAL
ORGANIZATION

Questions: tkurino@wmo.int