Current status of GK-2A AMV algorithm in NMSC/KMA

23 April 2018

Soo Min Oh, Byung-il Lee, Sung-Rae Chung, Seonkyun Baek

NMSC/KMA

Contents

- Status of COMS AMV
- Geo-KOMPSAT-2A(GK-2A) Programs
- ✤ GK-2A AMV algorithm
 - Target selection
 - Target tracking
 - Height assignment
 - Quality control
- ✤ Results

Summary

Status of COMS AMV

Observation Schedule

Status of COMS AMV

AMV T24(Operation)

- ➤ Target size : 24x24 (96 X 96km) →
- ➤ Target selection : Regular (REG) → Optimal target selection
- > Target interval : 12 pixels

 \rightarrow

AMV T16(Tested)

- 16x16 (56 X 56km)
- 8 pixels

Accuracy of COMS AMV (April 1 - 24, 2016)

Sonde(IR)	All level		High level		Middle level		Low level	
	T24	T16	T24	T16	T24	T16	T24	T16
Number	37940	76507	33601	67665	3190	6216	1149	2626
MVD	5.62	5.75	5.80	5.57	4.71	4.77	3.02	2.98
RMSVD	6.73	6.69	6.91	6.86	5.60	5.71	3.60	3.57
BIAS	-1.74	-1.23	-1.88	-1.34	-0.83	-0.50	-0.23	-0.17
RMSE	5.27	5.14	5.41	5.27	4.50	4.51	2.54	2.57

Assimilate(24x24, VIS, IR, WV) in KMA global system since Dec.
2011. Positive impact especially in East Asia [NWP Center]

500GPH RMSE diff(Cntl-COMS)-00UTC

FSO of Satwind data in East Asia

<September~ October in 2011>

<Winter & Summer in 2013>

Geo-KOMPSAT-2A Programs

- KMA plans to launch the next Korean geostationary meteorological satellite GEO-KOMPSAT-2A (GK-2A) in Nov. 2018
 - GK-2A for the next generation Meteorological Imager and SWx monitoring
 - GK-2B for the Ocean Color(GOCI2) and Atmospheric Trace Gas(GEMS) monitoring

AMI (Advanced Meteorological Imager)

1	Center wavelength (µm)							
Ī	AMI (Resolution)	ABI	AHI				
	1 blue	0.47 (1km)	0.47	0.46				
\bigstar	2 green	0.511 (1km)		0.51				
	3 red	0.64 (0.5km)	0.64	0.64				
	4	0.856 (1km)	0.865	0.86				
★	5	1.38 (2km)	1.378					
	6	1.61 (2km)	1.61	1.6				
\bigstar			2.25	2.3				
	7	3.830 (2km)	3.90	3.9				
	8	6.241 (2km)	6.185	6.2				
	9	6.952 (2km)	6.95	7.0				
	10	7.344 (2km)	7.34	7.3				
	11	8.592 (2km)	8.50	8.6				
	12	9.625 (2km)	9.61	9.6				
	13	10.403 (2lkm)	10.35	10.4				
	14	11.212 (2km)	11.2	11.2				
	15	12.364 (2km)	12.3	12.3				
	16	13.31 (2km)	13.3	13.3				

<Space weather Sensor>

KSEM(Korea Space wEather Monitor)

- PD : Particle Detector
- MG : Magnetometer
- CM : Charging Monitor

vs. AHI : addition : 1.38 μm (NIR), subtraction 2.3 μm (NIR)

- $1.38 \ \mu m$: favorable for $\ cirrus$ cloud detection, cloud type and amount
- $2.3 \ \mu m$: favorable for Land/cloud Properties

52 Meteorological Products

23 Primary Products & 29 Secondary Products

Scene & Surface Analysis (13)	Cloud & Precipitation (14)	Aerosol & Radiation (14)	Atmospheric condition & Aviation (11)	
Cloud detection	Cloud Top Temperature	Aerosol Detection	Atmospheric Motion Vector	
Snow Cover	Cloud Top Pressure	Aerosol Optical Depth	Vertical Temperature Profile	
Sea Ice Cover	Cloud Top Height	Asian Dust Detection	Vertical Moisture Profile	
Fog	Cloud Type	Asian Dust Optical Depth	Stability Index	
Sea Surface Temperature	Cloud Phase	Aerosol Particle Size	Total Precipitable Water	
Land Surface Temperature	Cloud Amount	Volcanic Ash Detection and Height	Tropopause Folding Turbulence	
Surface Emissivity	Cloud Optical Depth	Visibility	Total Ozone	
Surface Albedo	Cloud Effective Radius	Radiances	SO ₂ Detection	
Fire Detection	Cloud Liquid Water Path	Downward SW Radiation (SFC)	Convective Initiation	
Vegetation Index	Cloud Ice Water Path	Reflected SW Radiation (TOA)	Overshooting Top Detection	
Vegetation Green Fraction	Cloud Layer/Height	Absorbed SW Radiation (SFC)	Aircraft Icing	
Snow Depth	Rainfall Rate	Upward LW Radiation (TOA)		
Ocean Current	Rainfall Potential	Downward LW Radiation (SFC)		
	Probability of Rainfall	Upward LW Radiation (SFC)		

GK-2A AMV algorithm

Specification and flow chart

	GK-2A AMV			
Channels	VIS(03), SWIR(07), IR(13, 14), WV(08, 09, 10)			
Input L1b images	3 imag	ges (proxy: H	limawari8/AHI)	
	Normal scan(FD)	10 minute	
Time interval	Rapid scar	2 minute		
Model / RTM		UM N768/r	ttov 11.2	
Target box size	Cloudy target	VIS : 32by32 SWIR : 16by16 IR : 16by16 WV : 16by16		
	Clear-air target	WV : 1	6by16	
Target selection		Optimal (S	tatistic)	
Grid step size	Sa	ame with tar	get box size	
Search box size	Cloudy target	VIS : 1 SWIR : 5 IR : 5 WV : 54	85by185 4by54 4by54 4by54 4by54	
	Clear-air target	WV : 54	4by54	
Center of search area		Regu	lar	
Target tracking	CC			
Height assignment	Cloudy target	1. CCC 2. EBBT(Cl 3. IR/WV r 4. CO2 slic (+Inversio	loud base correction) rationing ing on layer correction)	
	Clear-air target	1. NTC 2. NTCC		
Quality control	QI, EE			

- Optimal target selection
 - Cloud Target: 03, 07, 08, 09, 10, 13, 14 (Using cloud mask)
 - Clear Target: 08, 09, 10

$$STD_{m,n} = \sqrt{\frac{1}{9} \sum_{i=-1}^{1} \sum_{j=-1}^{1} (BT_{m+i,n+j} - \overline{BT}_{m,n})^2}$$

Step1: Target(search) size and tempora 37기상위성센터

Preliminary Results for GK-2A

[P10: Sensitivity Tests]

Periods	2016.07.21. 00:00 ~23:00 (UTC)
Channel	Ch. 13 cloudy target, Ch. 08 clear target
Time interval	10 minute
Target(Search) here size	9(AG) $1G(EA)$ $2A(G2)$ $22(70)$ $A0(79)$ $A9(9G)$

Step2: Target tracking

Cross Correlation Coefficient

Caluated vector :
$$\vec{v} = \frac{\vec{r}}{\Delta t}$$

$$CC_{m,n} = \frac{1}{N_x N_y} \sum_{i=1}^{N_x} \sum_{j=1}^{N_y} \left(\frac{a_{m+i,n+j} - \bar{a}_{m,n}}{(\sigma_a)_{m,n}} \frac{b_{i,j} - \bar{b}}{\sigma_b} \right)$$

 $a_{i,j}$: BT value in ith row and jth column of N_x by N_y target box in search area at time $t_0 + \Delta t$. \bar{a} : Average of $a_{i,j}$.

 σ_a : Standard deviation of $a_{i,j}$.

 $b_{i,j}$: BT value in ith row and jth column of N_x by N_y target at time t_0 .

 \overline{b} : Average of $b_{i,i}$.

 σ_b : Standard deviation of $b_{i,j}$.

 N_x , N_y : Size of target box.

Step3: Height assignment(Cloud Targe 국가기상위성센터

Cloud Target: 4 methods + 2 combinations

Step3: Height assignment(Clear Target) 국가기상위성센터

✤ Clear Target: 2 methods → chose higher one

NTC & NTCC methods. (Transmittance profile by channel.)

*NTCC: Normalized total contribution *NTCC: Normalized total cumulative contribution

Step4: Quality Control

Quality Indicator (QI)

- Calculation Procedure: Calculated using weighted averaged of 5 consistencies
 - 1. Temporal **Direction** Consistency 2. Temporal **Speed** Consistency
 - 3. Temporal **Vector** Consistency 4. **Forecast** Consistency
 - 5. Local Vector Consistency

A Forecast Consistency

- Direction Test

$$\Phi_{dir.} = 1 - \left[\tanh\left\{\frac{Diff.(Dir.)}{coeff.A \cdot \exp\left(\frac{-Spd.avg}{coeff.B}\right) + coeff.C \cdot Spd._{avg} + coeff.D}\right\} \right]^{coeff.E}$$

– Others

$$\Phi_{other} = 1 - \left[\tanh\left\{ \frac{Diff.}{MAX(coeff.A \cdot Spd._{avg}, coeff.B) + coeff.C} \right\} \right]^{coeff.D}$$

Validation: 4 HA methods + 2 combinations

2016. 7. 1. ~ 7. 7. (All level(1000~100 hPa))

Ch13 (10.4)	GK-2A(Himawari-8)		Goes-R(Meteossat-8)		
Period	2016.7.1.~7.7.		Aug 2006	Feb 2007	
HA method	EBBT&IR/WV	EBBT & CO2	GOES-R/ABI Algorithm (AC	Cloud Height CHA) products	
Count	17702	17345	13987	15286	
MVD	4.71	5.05	4.51	5.21	
RMSVD	5.71	6.14	-	-	
Bias	-0.67	-1.09	0.24	-0.54	
RMSE	4.35	4.64	5.78	6.61	

Ch13 (10.4)	GK-	2A	MTG		
QI>80	> 8	30	> 80		
Reference	NWP	Sonde	NWP	Sonde	
Count	44145	1028	45580	1035	
Bias	-0.34	-1.32	-0.18	-0.80	
RMSE	4.74	5.92	4.70	5.91	
NBias	-0.023	-0.071	-0.012	-0.045	
NRMSE	0.316	0.316	0.323	0.330	

[Jaime Daniels, et al., GOES-R ATBD(2012)]

[Inter-comparison with MTG AMV]

Inter-comparison with MTG algorithm [P9: Inter-comparison results]

Optically THICK LOW cloud case

국가기상위성센터

National Meteorological Satellite Center

Optically THICK LOW cloud case

Optically THIN HIGH cloud case

Optically THIN HIGH cloud case

Summary

- We have developed Atmosphere Motion Vector for GK-2A/AMI using Himawari8/AHI as proxy data.
 - Target size(Search size) : 16 X 16 (54 X 54)
 - Height Assignment : EBBT+IR/WV intercept
 - The result is comparable with other institute
 - The accuracy is better than COMS one
 - Need to validate with long term data

Related Posters

- P7: Quality Control(Quality Index and Expect Error)
- P9: AMV Inter-comparison with EUMETSAT
- P10: Sensitivity Tests for target size and HA methods
- P11: Impact assessment

