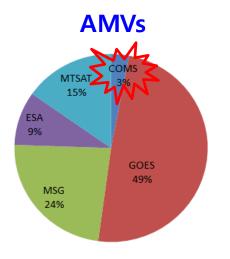
Impact Studies of Higher Resolution COMS AMV in the Operational KMA NWP System

Jung-Rim Lee¹

Hyun Cheol Shin¹, Sangwon Joo¹, YoonJae Kim¹, Eunhee Lee¹,

Jaegwan Kim², Chu-Young Chung²

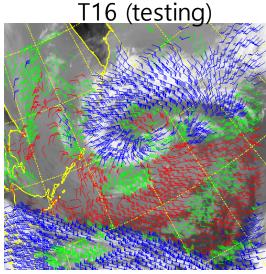
Numerical Data Application Division, NIMS/KMA¹


National Meteorological Satellite Center, KMA²

COMS AMV in the KMA System (Since Dec. 2011)

- KMA global system
 - Resolution: N512L70 (UM) (\sim 25km / top = 80km)
 - Target Length: 288hrs (00/12UTC), 87hrs (06/18UTC)
 - Initialization: Hybrid Ensemble 4DVAR

FSO KMA Global System (Summer 2015)



- COMS AMV (in operation)
 - Target size 24 X 24 (about 96 km resolution)
 - IR, WV, VIS channels with other AMVs (GOES, Meteosat, Himawari-8, and polar orbit satellites)
 - Thinning (2 degrees, 100 hPa, 60 min)
- Higher resolution COMS AMV (now testing)
 - Target size: 16x16 (about 64 km resolution), optimal target selection
 - → In this presentation, "The impact of T16 in the KMA global system" will be presented.

Higher Resolution AMV (by NMSC)

Red 1000 ~ 700 hPa Green 700 ~ 400 hPa Blue above 400 hPa

→ In the T16 AMV,

- Data Increased
- Less slow bias & RMSE

4.57

4.65

4.30

Condo	IR		SWIR		VIS		WV	
Sonde	T24	T16	T24	T16	T24	T16	T24	T16
Number of Vector	25514	53817	7816	17622	4900	9799	32098	66290
BIAS	-1.89	-1.48	-2.02	-1.63	-0.69	-0.43	-0.65	-0.39
RMSE	5.04	4.97	4.79	4.71	3.52	3.46	5.25	5.25
Number of Vector	40835	87832	6979	14372	11054	22364	57283	127230
BIAS	-1.13	-0.70	-1.39	-1.08	-0.72	-0.43	-0.13	0.12
I .	ı	I	1	I	1	ı	I	I

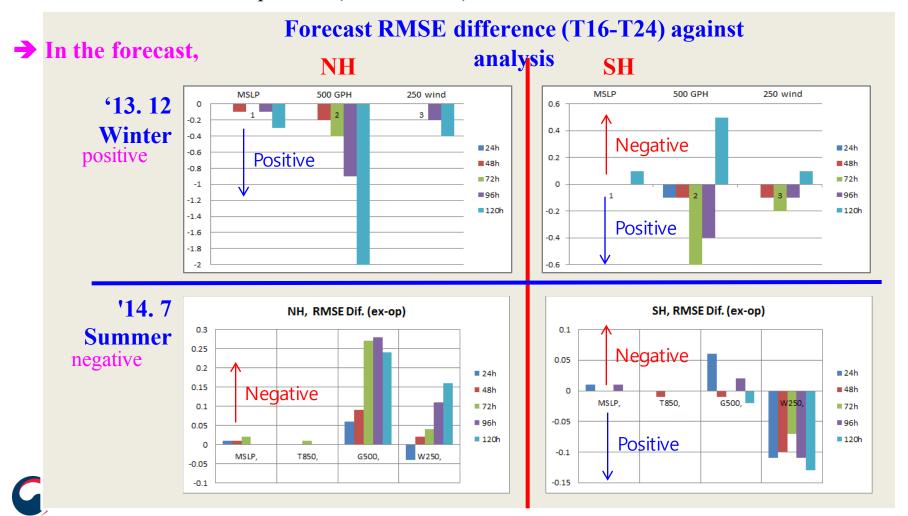
4.51

4.32

4.55

'14. 7

'15. 1


RMSE

4.64

4.58

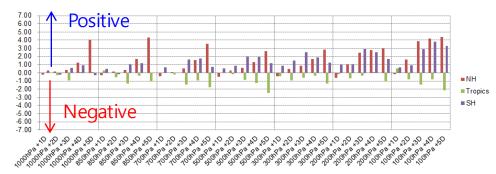
Preliminary Results (1/2)

- **Experiments** (using T16) on the seasons
- Verification and comparison (control: T24)

Preliminary Results (2/2)

- **Winter** (2013.12)
 - AMV has slow biases in jet region
 - → By using higher resolution AMV, slow biases reduced in the analysis

Mean analysis difference, T16-T24 (Red color : T16 makes the wind speed faster)


U at 150 hPa (m/s)

V at 200 hPa (m/s)

→ Forecast error decreased

Percentage improvement of RMSE(%) against Analysis

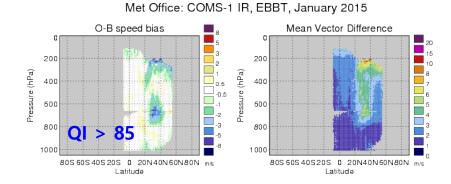
Geopotential Height

To lead better performance in Summer

- **❖** What can we try?
 - 1 Blacklisting
 - Towards increased use of T16 data reflecting seasonal variation
 - 2 Error profile
 - Apply height assignment error of T16 according to seasons
 - (3) Thinning (2 degrees \rightarrow 1.5 degrees)
 - → By monitoring T16 AMV, new blacklisting strategy and error profiles are derived.

New experiments

	Experimental setting
Preliminary	Operational setting -> Positive in winter, but negative in summe
Experiment V1	Very detailed blacklisting
Experiment V2	Operational setting, but use all AMV with QI >80
Experiment V3	V1 blacklisting + New error profile

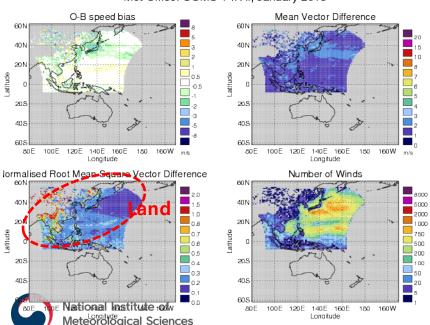

Test again!

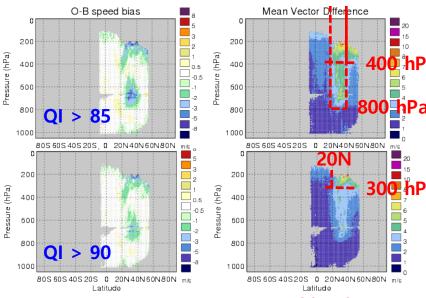
Blacklisting (1/2)


- Remove low level wind over land
 P(lat>20) > 800 hPa & over land
- EBBT
 - QI < 85
- WV-Int, STC
 - -QI < 90

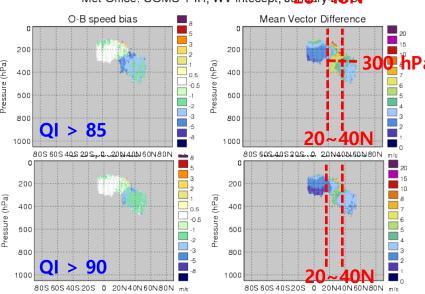
Meteorological Sciences

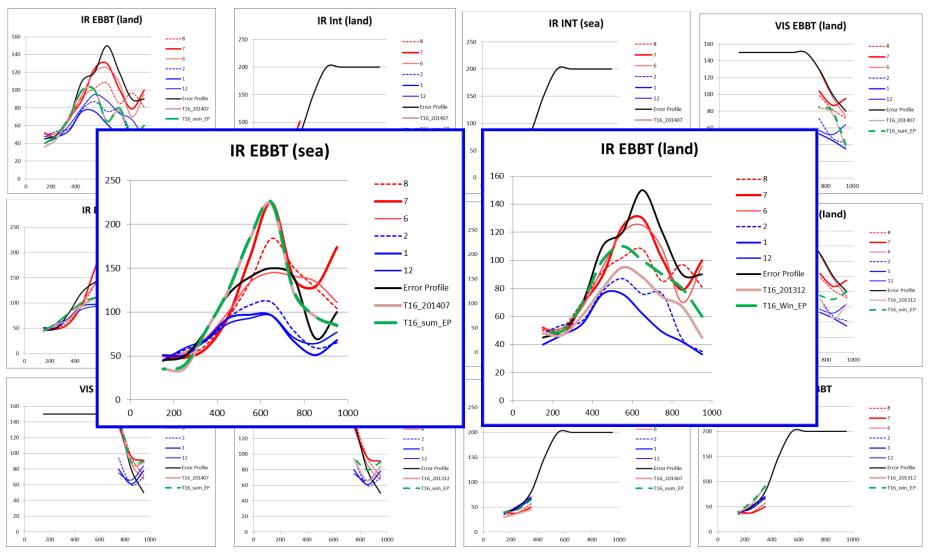
Mean Vector Difference O-B speed bias O-B sp


Operational blacklisting


Blacklisting (2/2) * Detailed blacklisting

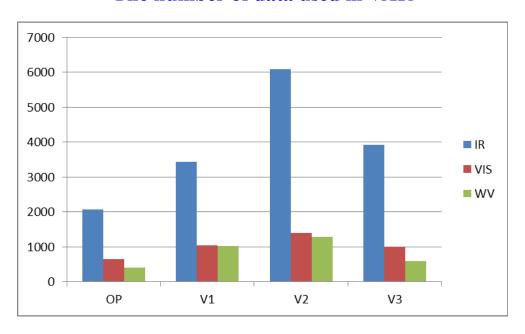
- Remove low level wind over land
 - P > 800 hPa, over land
- EBBT
 - QI < 85
 - QI < 90 & P(20<lat<40) < 800 hPa P(lat>20) < 400 hPa
 - P(lat>20) < 300 hPa
- WV-Int, STC
 - -QI < 85
 - 20<lat<40
 - QI < 90, P(20 < lat) < 300 hPa


Met Office: COMS-1 IR II, January 2015


Met Office: COMS-1 IR, EBBT, Janu 2020 40N

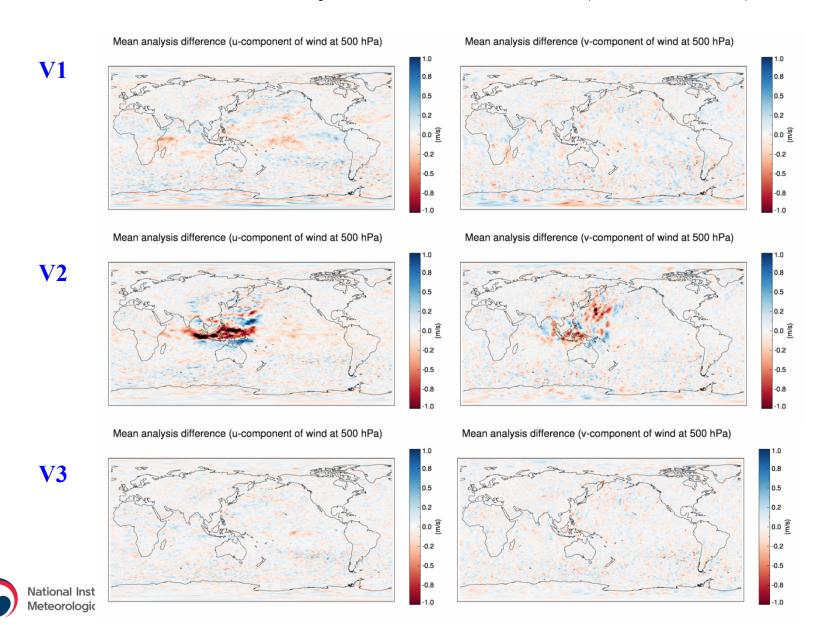
Met Office: COMS-1 IR, WV intecept, Ja20ary 40 N

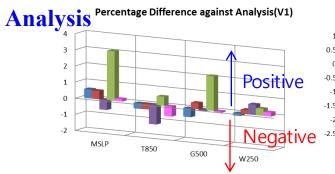
Error Profile

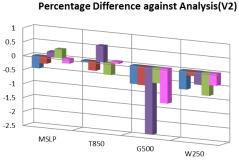


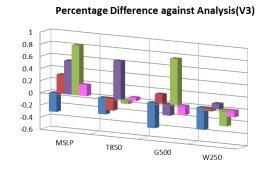
Height (hPa)

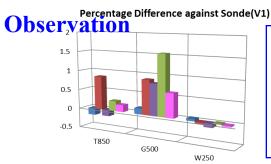
Data use


The number of data used in VAR

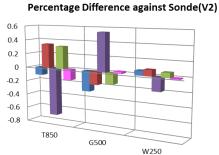

→ The number of data used in VAR increased when using detailed blacklisting(V1) and the poor QI condition(< 80, V2)</p>

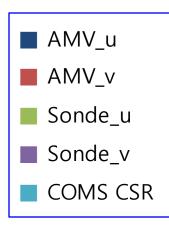


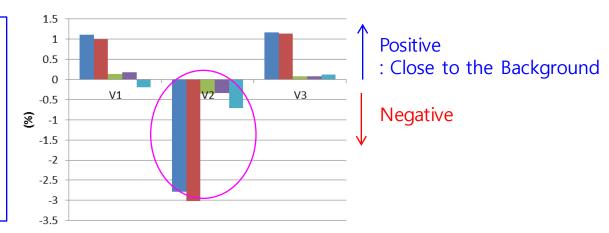

U,V Mean analysis difference (T16-T24)



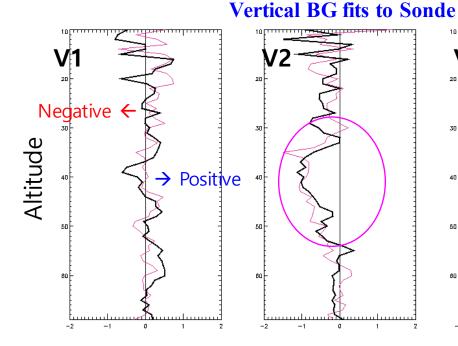
Forecast impact (201407)






0.8
0.6
0.4
0.2
0.0
0.2
0.4
0.6
0.8
1850
G500
W250

Global (asia)	MSLP	T850	G 500	W250	Mean	Analysis
V1	0.15 (3.06)	-0.62 (0.56)	-0.07 (2.14)	0.25 (0.44)	-0.07 (1.55)	·
V2	-0.16 (0.31)	0.07 (-0.42)	-1.24 (-0.54)	-0.42 (-0.82)	-0.44 (-0.37)	
V3	0.18 (0.82)	0.06 (-0.06)	-0.15 (0.76)	-0.11 (-0.27)	-0.00 (0.31)	


	Global (Asia)		T850 G500		Mean Observation	
	V1	0.18 (0.26)	0.62 (1.55)	-0.03 (0.02)	0.25 (0.61)	
	V2	-0.15 (0.32)	0.03 (-0.15)	-0.01 (0.07)	-0.05 (0.08)	
National Institute of		-0.24 (0.02)	0.10 (0.19)	0.06 (0.05)	-0.03 (0.12)	
Meteorological Scien	nces					

Percentage changes in BG fits to Obs(%)

→ BG fits got closer in V1 and V3, but much bigger in V2(QI<80)

Summary and Plans

- * COMS AMV have been used in the KMA operation system for 5 years.
- To improve the performance of COMS data in the model, higher resolution AMV products were introduced, and tested in the model.
 - 1 Positive in winter analyzing the background wind speed faster
 - 2 Initially negative in summer, but positive after the adjustment of blacklisting
 - 3 Detailed blacklisting works well, and leads the forecast to be improved
 - 4 Error profile should be tuned properly, and tested again
- ❖ Higher resolution COMS AMV(T16) will be tested in the higher resolution global model (N768) before operation, and also in the local model (1.5km) with Himawari-8 AMV.

Thank you.

