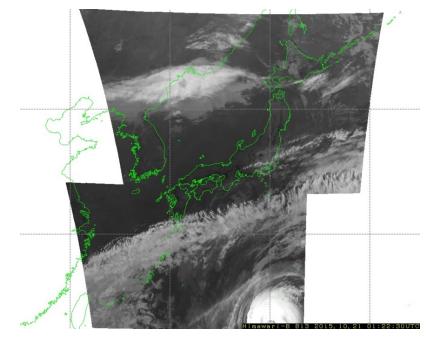
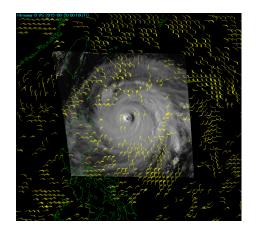
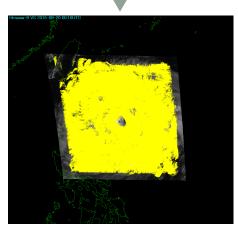
ASSIMILATION EXPERIMENTS OF HIMAWARI-8 RAPID SCAN ATMOSPHERIC MOTION VECTORS


- 1: Meteorological Research Institute, JMA
- 2: RIKEN Advanced Institute for Computational Science
- 3: Meteorological Satellite Center, JMA

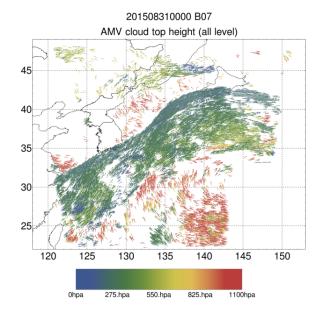
This research is supported by JST, CREST, as part of "Innovating "Big Data Assimilation technology for revolutionizing very-short-range severe weather prediction" (PI: Dr. Takemasa Miyoshi)



Purpose


Improve the accuracy of shortrange forecasts of heavy rainfalls and other meso-scale severe weathers by utilizing high temporal and spatial resolution Himawari-8 AMVs for assimilation

2.5-min rapid scan area around Japan


AMVs around a typhoon derived from 10-min. full disk scan using IR channel (Δ 2km)

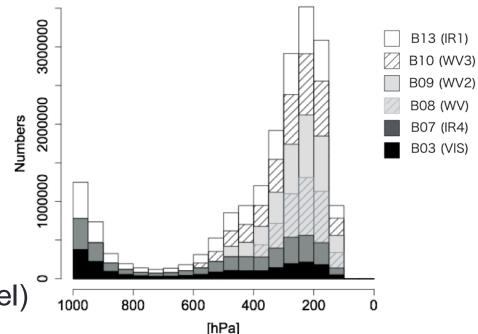
2.5-min. RS-AMVs using IR (Δ 2km) and VIS (Δ 0.5km)

Himawari-8 Rapid Scan AMV

- Derived from 2.5-min. rapid scans around Japan
- 5-min. interval time for AMV retrieval
- Produced every 15-min. in six bands
- The same AMV software as used in deriving full-disk AMVs

B07 RS-AMV at 00:00 UTC, 31st Aug. 2015

(Shimoji 2014)

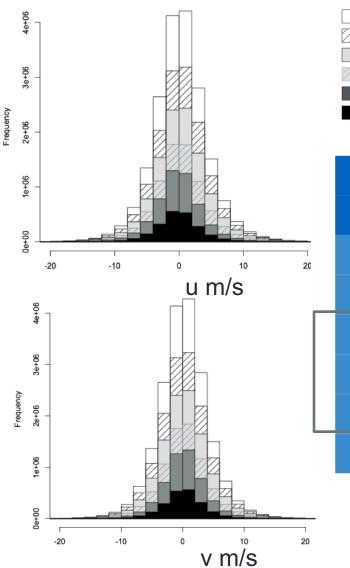

Band	Wave length [µm]
B03	0.64
B07	3.9
B08	6.2
B09	6.9
B10	7.3
B13	10.4

Validation and Observation Error Statistics

Validation with
JMA meso-analysis
Sonde
Wind Profiler (WPR)
during 1st – 31st Aug. 2015

 Observation Error statistics
 FG departure covariances were derived using differences from
 NHM (JMA non-hydrostatic model)
 forecast winds

- Horizontal correlations
- Interband correlations
- during 1st 15th Aug. 2015

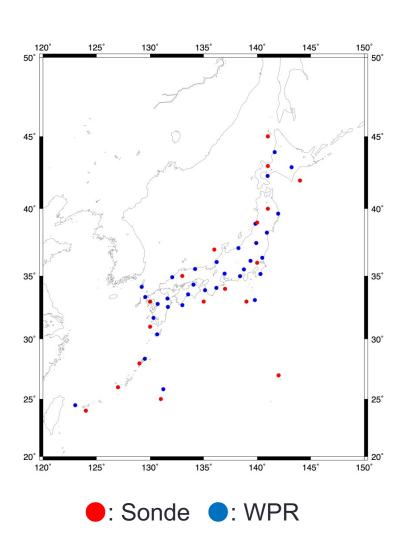

Number of observations (Aug. 2015)

Validation with JMA meso analysis

B13 (IR1)

B08 (WV)

B07 (IR4) B03 (VIS)



B10 (WV3) B09 (WV2) Averaged differences (RS-AMV minus JMA meso analysis) in Aug. 2015

	RMSVD	RMSE		Μ	E
		u	V	u	V
B03	5.19	3.74	3.60	-0.11	0.08
B07	5.40	3.92	3.72	-0.21	0.24
B08	6.93	4.96	4.83	0.70	0.32
B09	6.70	4.80	4.67	0.50	0.20
B10	6.50	4.64	4.55	0.34	0.18
B13	5.72	4.12	3.97	0.09	0.17

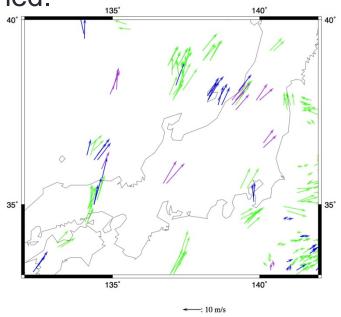
[m/s]

Validation with Sonde/WPR Observations

0	RMSVD	RM	ISE	М	E
Sonde		u	V	u	v
B03	7.17	5.33	6.37	-0.18	0.17
B07	6.97	5.18	4.66	-0.22	0.14
B08	8.38	6.19	5.66	0.73	0.13
B09	8.13	6.00	5.48	0.56	0.05
B10	7.89	5.83	5.31	0.42	0.07
B13	7.22	5.35	4.86	0.13	0.04

<= 150km, <u>+</u>25hPa, 1.5-hrs.

	RMSVD	RM	ISE	Μ	IE
WPR		u	v	u	v
B03	5.62	4.10	3.84	0.31	-0.37
B07	5.61	4.09	3.85	0.46	-0.32
B08	7.58	5.58	5.12	2.55	-0.38
B09	7.26	5.25	5.01	1.89	-0.54
B10	6.71	4.83	4.65	1.41	-0.49
B13	5.92	4.29	4.08	0.72	-0.35


<= 50km, ±10hPa, 5-min.

Low-level RS-AMVs over Land

Many low-level AMVs over land were obtained.

Differences in VIS and IR (Aug. 2015)

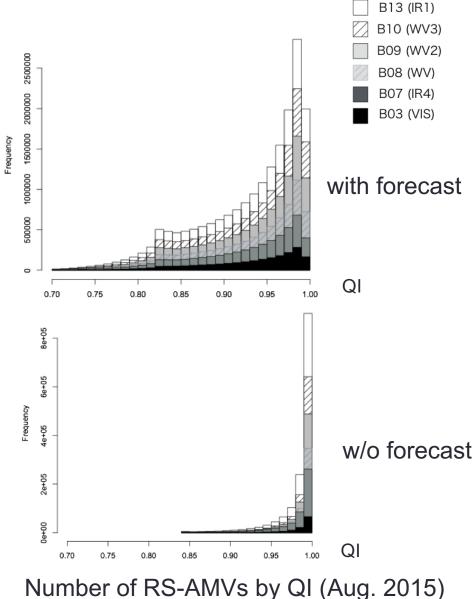
WPR		RM	SE	Μ	E	
		u	v	u	V	Count
	B03	3.74	3.28	0.23	-0.06	37473
Lower	B07	3.79	3.40	0.42	0.09	42120
(>700hPa)	B13	4.00	3.67	0.62	0.15	51575
Mid	B03	4.12	3.93	-0.40	-0.59	75665
(400-700h	B07	4.05	3.93	-0.15	-0.57	123700
Pa)	B13	4.23	4.15	-0.07	-0.64	154125
	B03	4.10	3.84	1.01	-0.32	82524
Upper (<=400hPa)	B07	3.91	4.22	1.08	-0.22	124757
(<=400NPa)	B13	4.43	4.14	1.48	-0.24	166021

Low-level RS-AMV (>700hPa) 03:00 UTC 17th Aug. 2015

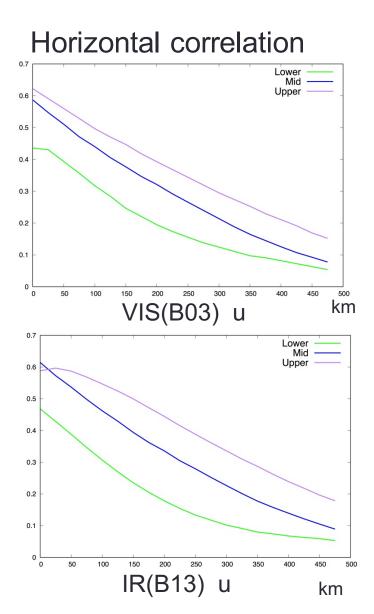
- →:> 900hPa
- →:900 800 hPa
- →:800-700 hPa

Tendency toward High QI

Quality Indicator (Homlund 1998)


Difference from JMA meso analysis by QI (RMSVD [m/s])

	0.8 - 0.9	0.9 - 1.0	1.0
B03	5.47	3.98	3.59
B07	8.65	4.07	3.65
B08	14.39	7.28	4.64
B09	12.12	6.91	4.62
B10	10.62	6.62	4.56
B13	6.18	4.45	4.03


with forecast

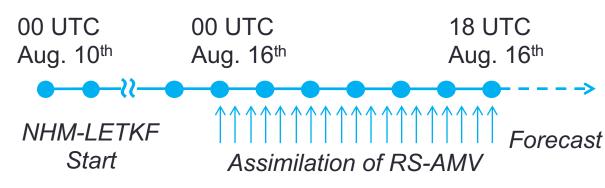
	0.8 - 0.9	0.9 - 1.0	1.0
B03	5.16	4.43	3.91
B07	5.30	4.62	5.03
B08	10.50	7.73	6.76
B09	9.31	7.31	6.28
B10	8.61	6.80	6.12
B13	5.66	4.79	4.51

w/o forecast

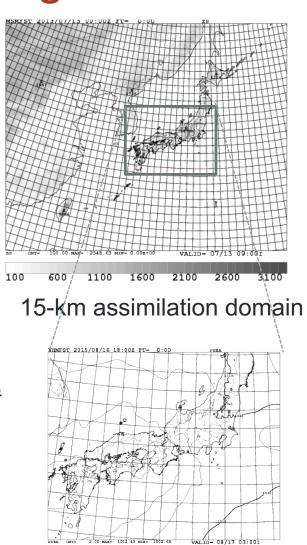
Correlations of Observation Error

Inter-band Correlation

		B03	B07	B08	B09	B10	B13
B03	L		0.44	-	-	-	0.45
	Μ		0.56	-	0.55	0.56	0.57
	U		0.59	0.61	0.62	0.62	0.62
B07	L			-	-	-	0.46
	Μ			-	0.57	0.58	0.59
	U			0.63	0.63	0.63	0.63
B08	U				0.63	0.63	0.63
B09	Μ		: Lowe	r		0.60	0.57
	U		: Lowe I: Mid	71		0.63	0.63
B10	Μ	U	: Uppe	er			0.59
	U						0.63

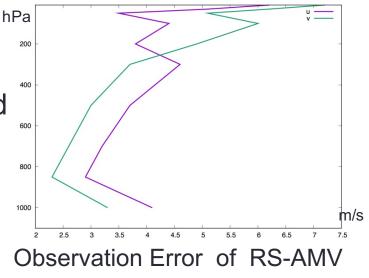

Correlations of FG covariances between pairs of RS-AMVs in the same 3-hour time windows

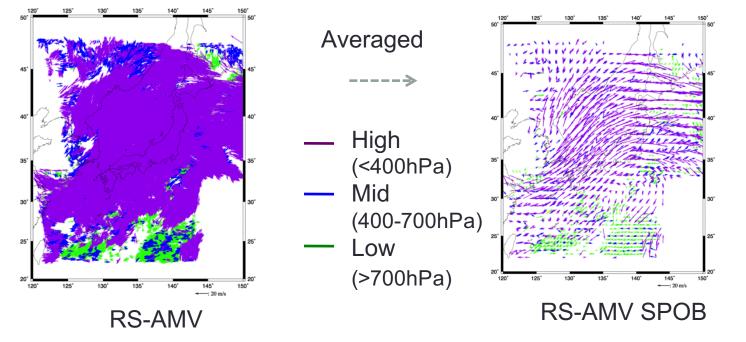
Error Characteristics


- The quality of Himawari-8 RS-AMVs is good enough for assimilation. Low-level RS-AMVs over land also seem to have a good quality when compared with WPR observations.
- RMSVDs in WV bands (B08, 09,10) were slightly bigger than those in VIS or IR bands and showed slight positive biases.
- Data selection for assimilation Which data is more meaningful ?
 - Additional QC than QI may be necessary
 - Band selection ?
 - How to form super observation ? Data thinning ?

Assimilation Experiment Settings

- NHM-LETKF (Kunii 2014)
 - The local ensemble transform Kalman filter (LETKF) implemented with the Japan Meteorological Agency's nonhydrostatic model (NHM)
- Δ15 km · 50 layers, 50 members
- Localization : 200 km/0.2 lnP
- 3-hour window, 1-hour time slot

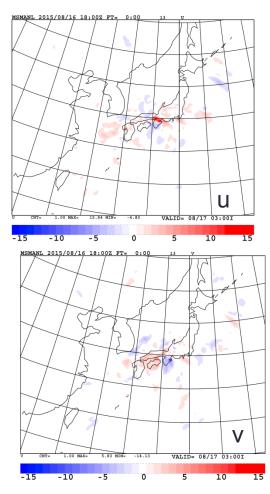

CNTL: Observational data used for operational JMA meso-analysisTEST: CNTL data + RS-AMV

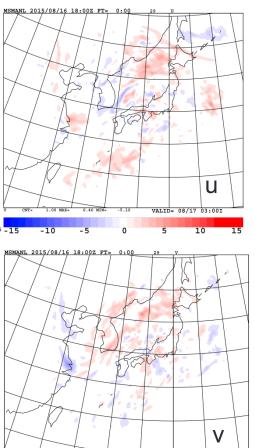


5-km forecast domain

RS-AMV Super Observation

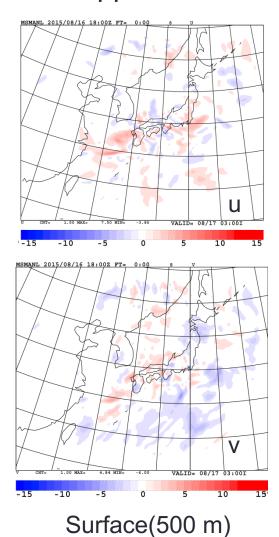

- 00- 18 UTC 16th Aug. 2015
- Super observation (Δ50 km 50 hPa at low level, Δ100 km • 100 hPa at high and mid level)
- Himawari-8 RS-AMVs in B03, B10 and B13 were combined into one SPOB every hour on the hour

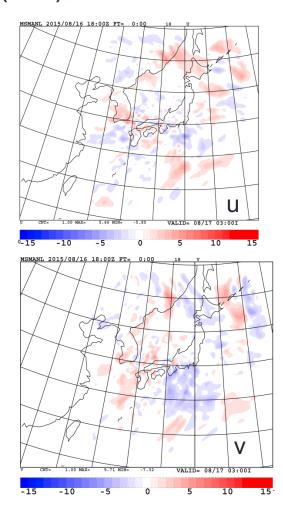




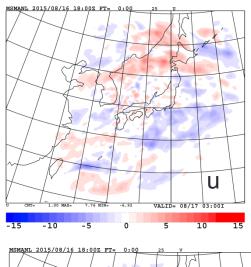
Results – Increment

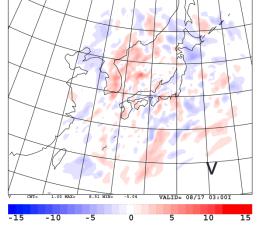
 Increment of u- and v- wind component (Analysis– First Guess) at 18 UTC on Aug. 16th in TEST


Surface(500 m)

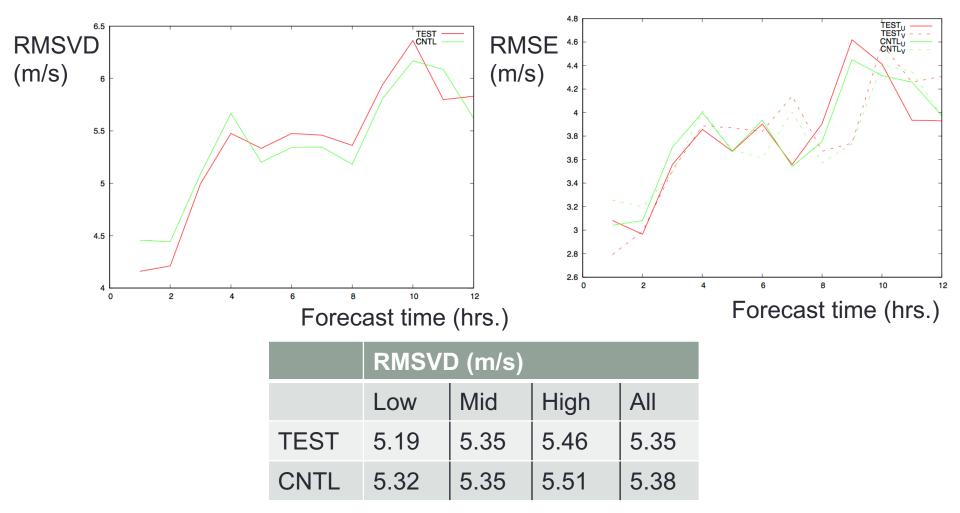

400 hPa

10


Results - Analysis

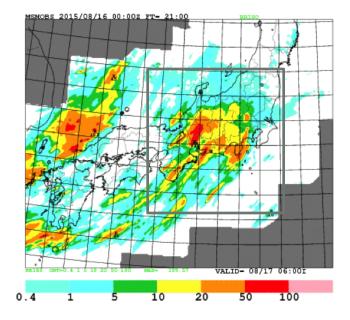

Difference of analysis (TEST – CNTL) at 18 UTC on Aug. 16th
 Upper Panels : u (m/s), Lower Panels : v (m/s)

700 hPa

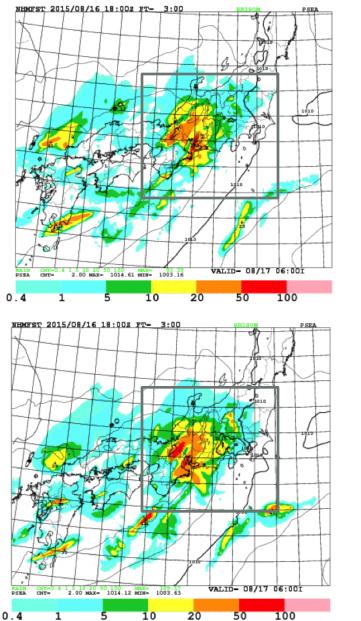


400 hPa

Results – Wind forecast


Forecast winds compared with WPR observations

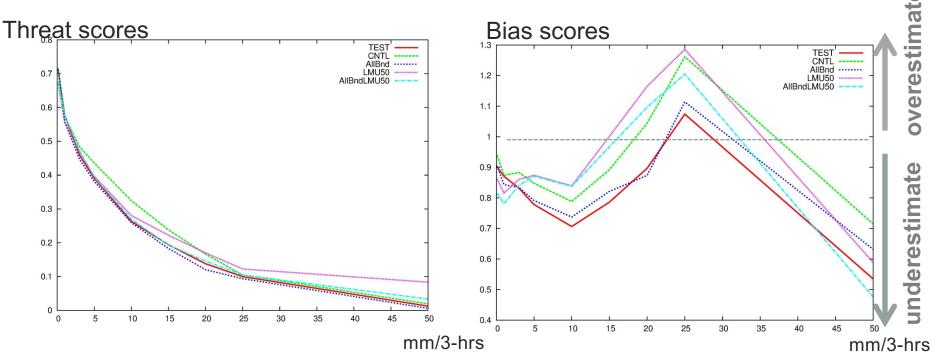
Averages of 27 wind profiler stations



Results – Rainfall forecast

3-hour amount of rainfall FT = 03, 06, 09, 12

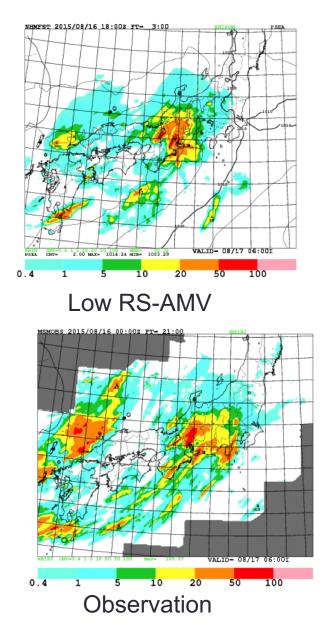
Observation

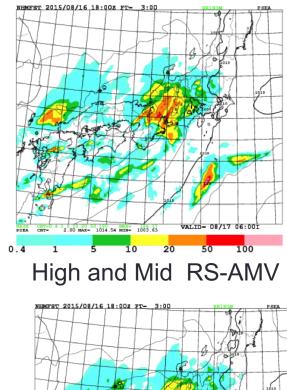

TEST

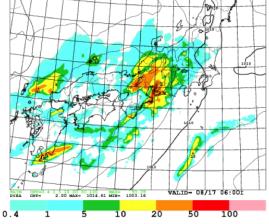
CNTL

RS-AMVs were assimilated in different experiments

Experiments	Levels	Bands	Resolutions	Objectives of experiment
TEST	Low+Mid+High	B03, B10, B13	50km(Low), 100km(Mid, High)	-
AllBnd	Low+Mid+High	All 6 bands	50km(Low), 100km(Mid, High)	Error correlation of inter-bands
LMU50	Low+Mid+High	B03, B10, B13	50km(Low, Mid, High)	Error correlation of horizontal distances
AllBndLMU50	Low+Mid+High	All 6 bands	50km(Low, Mid, High)	Both
Low RS-AMV	Low	B03, B10, B13	50km(Low)	Impacts of low- level winds
High and Mid RS-AMV	Mid+High	B03, B10, B13	100km(Mid, High)	Impacts of High- and Mid-level winds

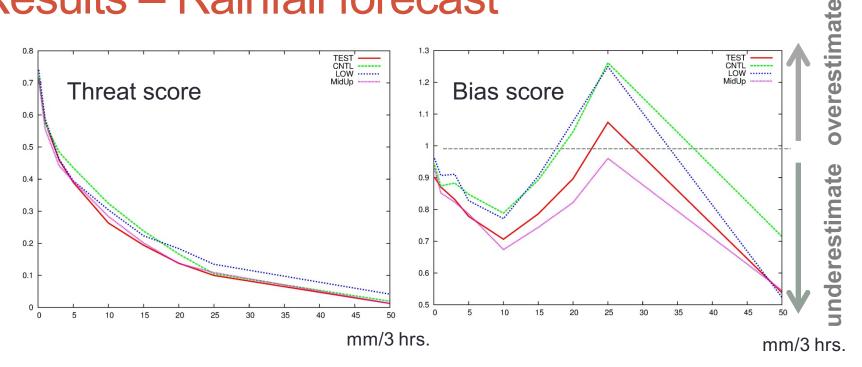

Results – Rainfall Forecast Scores




Threat and bias scores averaged over the whole forecast period (up to 12 hrs.)

- TEST is slightly better in scores of light rain but worse in case of heavy rain than CNTL.
- 50 km is better than 100 km?
- The selection of bands (B03, B10, B13) seems better in this case.

Impact of Low- and High/Mid- level AMV ?



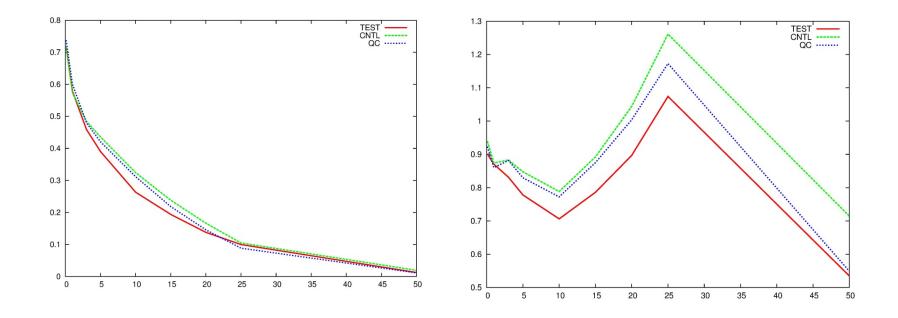
TEST

Results – Rainfall forecast

Threat and bias scores averaged over the whole forecast period (up to 12 hrs.)

LOW : Only low-level RS-AMVs were assimilated. MidUp : Only mid- and high-level RS-AMVs were assimilated.

 Low RS-AMVs seem to have more positive impact than midand high-level RS-AMVs in this case.


Results of Assimilation Experiments

- Assimilation Experiments of Himawari-8 RS-AMVs on a heavy rainfall event on 17th Aug. 2015 were conducted.
- TEST is slightly better in scores of light rain but worse in case of heavy rain than CNTL.
- When only low-level RS-AMVs were assimilated, it showed better rainfall forecast scores than TEST and comparable to TEST. Tuning of mid- and high-level RS-AMVs in SPOB may be a key issue.
- The experiments assimilating RS-AMVs from all six bands were worse than the experiments using the selected three bands.

Summary

- The Data quality and the characteristics of observation errors of RS-AMVs were examined using the statistics of differences from JMA mesoscale analyses, radiosonde observations and NHM forecasts. Data assimilation experiments using NHM-LETKF (Kunii 2014) on a heavy rainfall event were conducted to see the impact of RS-AMVs on analyses and forecasts of wind and rainfall.
- In order to make full use of these high resolution data and to avoid observation error correlations in space, time and interband, the strategies for quality control, formation of super observations or data thinning should be well considered.
- We need further investigation about how to utilize RS-AMVs in our data assimilation system more effectively.

Thank you for your attention.

QC: SPOB is not formed when

• the STD of all the RS-AMVs in the prism exceeds the threshold

• the number of data in the prism is less than ten