

Royal Netherlands Meteorological Institute Ministry of Infrastructure and the Environment

Mesoscale scatterometer assimilation

Ad.Stoffelen@knmi.nl

Leader Active Remote Sensing Group Satellite Observations, KNMI

> Gert-Jan Marseille Jur Vogelzang Wenming Lin (ICM) Marcos Portabella (ICM)

Do we have enough data?

Does Dynamical Downscaling With Regional Climate Models add Value to Surface Marine Wind Speed From Reanalyses?

Jörg Winterfeldt^{1*}, Ralf Weisse¹, Matthias Zahn¹ ¹Institute of Coastal Research, GKSS Research Centre, Geesthacht, Germany

*joerg.winterfeldt@gkss.de

Simulations with RCMs REMO and CLM: (available from CRASTDat Database)

•Three hindcasts with RCMs REMO (Jakob and Podzun, 1997) and CLM (Böhm et al. 2006) •Initialization and forcing at lateral boundaries: NCEP/NCAR-Reanalysis (NRA), ~1.875° resolution, •SN-REMO & CLM hindcasts are additionally forced by spectral nudging (von Storch et al., 2000)

Hindcast	STD-REMO (Standard)	SN-REMO	CLM
Based on:	EM	EM	LM
	Hydrostatic	Hydrostatic	Non-hydrostatic
Forcing:	NRA	NRA	NRA
Spectral Nudging:	No	Yes	Yes
Resolution:	0.5°	0.5°	0.44°

 For that purpose a gridded QuikSCAT Level 2B 12.5 km swath (L2B12) data set is produced on SN-REMO grid (rain flagged L2B12 data discarded) co-location with SN-REMO: QuikSCAT wind speed retrieval max. 12.5 km and +/- 10 min from SN-REMO grid point / time step

• Modified BSS = $\begin{cases} 1 - \sigma_F^2 \sigma_R^{-2} & \text{if } \sigma_F^2 \le \sigma_R^2 \\ \sigma_R^2 \sigma_F^{-2} - 1 & \text{if } \sigma_F^2 > \sigma_R^2 \end{cases}$

• "Forecast" F: SNREMO, reference "forecast" R: NRA, predictand/observation: gridded QuikSCAT L2B12 data

HARMONIE from ECMWF

- HSCAT scatterometer 50 km
- HARMONIE effective resolution 25 km, grid 2.5 km

	(m/s)	bias u_{10m}	stdev u_{10m}	bias v _{10m}	stdev v _{10m}
	HSCAT	(23.961	collocations); $\overline{\Delta}$	$\overline{t} = -0.29; \ \overline{ 2 }$	$\Delta t = 0.85$
	(o-b)	-0.46	1.61	-0.24	1.57
Temporal interpolation:	$(o - b_t)$	-0.46	1.36	-0.22	1.29
+ spatial averaging:	$(o - \bar{b}_t)$	-0.45	1.25	-0.22	1.18

ECMWF:		t_f	bias u_{10m}	stdev u_{10m}	bias v _{10m}	stdev v _{10m}
	HSCAT	5.6	-0.11	1.09	0.05	1.15

- ECMWF 6-hour forecast better than matched 50-km scale time-interpolated HARMONIE background
- \succ ECMWF resolution is ~150 km over the open ocean
- Deterministic resolution

Nastrom & Gage Observed Spectrum

- Tropospheric spectra are close to k^{-5/3}
- 3D turbulence
- L/H ~ 100
- SD = 0.4 (log spectral density)
- Least variance/ detectability in small scales

Nastrom & Gage Observed Spectrum

Small-scale data assimilation

- The amplitude spectrum of small-scale atmospheric waves can be well simulated in NWP models, but the determination of the phases of these waves will be problematic in absence of well-determined forcing (orography) or observations
- Undetermined phases at high resolution cause
 - Increased NWP model error, B' > B
 - Model errors get more variable and uncertain since small scales tend to be coherent; coherence is of most interest
 - B error structures will be spatially more sharp
 - Increased O-B, while the observation (representativeness) errors will be reduced; observations (should) get more weight, O' < O
 - Increments would be larger
 - When O' > B, the analysis error will be larger too ! A' > A

Challenges

- > Adaptive B covariances are difficult to estimate
- More (wind) observations are needed to spatially sample small-scale B structures
- \succ Observations need to be accurate, O < B
- How to prevent overfitting (uncertain B, small O) due to inaccurate and high innovation weights ?
- And spin-up due to more noisy analysis (statistical B) ?
- Separate determined from undetermined scales in data assimilation, e.g.,
 - > Data assimilation with ensemble mean ?
 - Maintain broad B ?
 - SuperMod up to determined scales ?

Examples

Estimated B error variances

ECMWF Ensemble Data Assimilation (EDA background error) ASCAT-derived ECMWF background error by triple collocation in QC classes

NWP Background spatial error correlation structure

Cyclone SH mm/h

Number of ambiguities

Cyclone SH, 2DVAR analyses

Cyclone SH, selected solutions

All the QC-accepted data (March-August 2009)

	ASCAT-ECMWF-buoy comparison (mean buoy winds)					
	ASCAT vs ECMWF	ASCAT vs buoy point wind	Ν			
Default	2.27	1.86	6908			
New	2.26	1.83				

×

	ASCAT-ECMWF-buoy comparison (mean buoy winds)					
	2DVAR vs ECMWF	2DVAR vs buoy point wind	2DVAR vs ASCAT	Ν		
Default	1.91	2.01	1.22	6908		
New	2.06	1.85	0.81			

Data volume 15-03-2008

▶1 424 147 observations

Improved prediction of landing times by ModeS aircraft winds

Case\ Par- ameter	Minimum (s)	Maximum (s)	Mean (s)	St.Dev. (s)
No Wind	-293	169	2,3	79,9
KNMI 1.0	-80	70	-3,8	20,5
D11	-64	56	-3,2	17,7
H11	-58	46	-3,3	17,6
M11(3)	-69	55	-3,4	17,7
M11(1)	-61	50	-4,9	17,4

ModeS winds have impact in HIRLAM, but not in HARMONIE ?

HARMONIE model (Hirlam ALADIN Research on Meso-scale Operational NWP in Euromed)

- Non-hydrostatic
- ➢ 800x800 grid
- 2.5 km grid size
- 65 vertical levels
- 3D-Var assimilation
 - 8 times per day
 - 48-hour forecast
- ECMWF boundaries
- Available since 2012

HARMONIE impact experiments

- ➢ 6-week period 15/11/2013 31/12/2013
 - Including 5/6 December "Mandela storm"
- 3D-Var data assimilation
- Conventional observing systems:
 - radiosonde, aircraft, SYNOP (ground stations), buoys
- Available scatterometers: ASCAT A/B (12.5 km coastal), OSCAT (50 km), HSCAT (so far used for verification only)
- Experimental model version; cycle Cy38h1.2

NO OBS	; no observations
CONV-3h	; conventional observations – 3-h cycling
CONV+SCAT-3h	; CONV-3h + scat observations - no thinning
CONV+SCAT-THINN-3h	; CONV+SCAT-3h but ASCAT thinning (100 km)
CONV+SCAT-THINN-1h	; CONV+SCAT-THINN-3h but 1-h cycling

SCAT impact largely gone after 3 hours

- Possible explanations
 - Incorrect weight given to observations in the analysis; this was verified and indeed too much weight is currently given to observations.
 - For ASCAT: 1.39/1.55 stddev, ignoring "footprint error"
 - Timing issue in 3D-Var for e.g. aircraft, all satellite data.
 - But scores do not take into account coarse temporal data coverage
 - Most forecast initial states had no SCAT data
 - Probably better to limit verification to forecasts initiated with SCAT
 - Model bias (next slides)

Model bias example: Storm Ulli, **3 January 2012**

3 Jan. 2012 ~ 13UTC. In the strong westerly flow, a cold front rapidly moved across the North Sea, passing the Dutch coast. The front was accompanied with a squall line. The Dutch coastguard reported a so called meteo-tsunami at the coast of Ijmuiden, with a sea level change (rise and fall) of over 1.5 meters in 30 minutes.

EC-U10; OPER; verification time: 2012010314UTC

Harmonie 3 January around 13 UTC

25

Harmonie 3 January around 14 UTC

Large impact SCAT on analyses but not maintained in a biased model

Conclusions

- > Mesoscale data assimilation is a new paradigm
- Many accurate 4D wind observations are needed to initialize 3D turbulence and convection in the atmosphere
- Undetermined scales cause headaches and destroy the analysis of the larger scales potentially
- It is possible to determine small observed scales in the analysis, if they did not exist yet (2DVAR)
- Weather models return to their climatological balance very quickly though
- Seek ways to avoid analyzing non-deterministic scales and their detriment as model noise
- Accurate treatment of time and space aspects, balance

Workshop

Wind Profiles and Mesoscale Data Assimilation

Ljubljana, 19-20 September 2016 meteo.fmf.uni-lj.si/en/workshop

Satellite Wind Services at Sea

- Asia India **OSI SAF** m Ocean
- 24/7 Wind product services (OSI SAF)
 - Constellation of satellites
 - High quality winds, QC
 - Timeliness 30 min. 2 hours
 - Service messages
 - QA, monitoring
 - Software services (NWP SAF)
 - Portable Wind Processors
 - Weather model comparison
 - Organisations involved: KNMI, EUMETSAT, EU, ESA, NASA, NOAA, ISRO, SOA, WMO, CEOS, ..
 - Users: NHC, JTWC, ECMWF, NOAA, NASA, NRL, BoM, UK MetO, M.France, DWD, CMA, JMA, CPTEC, NCAR, NL, . . .

More information:

www.knmi.nl/scatterometer

Typhoon Chan-hom, July 3, 2015 (early stage)

Typhoon Chan-hom, July 3, 2015 (early stage)

Typhoon Chan-hom, 2DVAR analyses

Typhoon Chan-hom selections

Wind front

Wind front 2DVAR analysis

Wind front selections

Triple collocation

	Scatterometer		Buoys		ECMWF	
m/s	σ_u	σ_{v}	σ _u	σ_v	σ_u	σ_{v}
ASCAT-A 25-km	0.63	0.71	1.21	1.35	1.39	1.44
ASCAT-B 25-km	0.63	0.66	1.26	1.39	1.38	1.42
ASCAT-A Coastal	0.76	0.84	1.18	1.34	1.54	1.57
ASCAT-B Coastal	0.81	0.79	1.24	1.35	1.53	1.57

QC: Which error is acceptable?

- We can produce winds with SD of buoy-scatterometer difference of 0.6 m/s, but would exclude all high-wind and dynamic air-sea interaction areas
- The winds that we reject right now in convective tropical areas are noisy (SD=1.84 m/s), but generally not outliers!
- What metric makes sense for QC trade-off?

Observations and Models

T2m verification over land

NO OBS CONV-3h CONV+SCAT-3h CONV+SCAT-THINN-3h CONV+SCAT-THINN-1h

- Scatterometer improves analyses of 2-m temperature over
- land

 \geq

cases

٩

- SCAT impact gone after 3 hrs (3-h cycle)
- Impact maintained for 1-h cycling; SCAT or additional SYNOPS??

NO OBS CONV-3h CONV+SCAT-3h CONV+SCAT-THINN-3h CONV+SCAT-THINN-1h

Scatterometer slightly positive for 10-m wind over land Similar sores for SCAT thinning/nothinning

Tandem-Aeolus impact on **analyses** Analysis improvement at forecast initial time of '99

Christmas storm Martin (26 Dec 1999 12:00 UTC) for the

Tandem-Aeolus scenario Single-time SOSE; 6 hours DWL obs.

ANALYSIS IMPROVEMENT (m/s) 500 hPa (u,v); andate=19991226 12UTC

SOSE – cycling; 84 hours DWL obs.

N.HEMIS: 0.54. EUR: 0.03. NATL: 0.25. NAMER: 0.13. N.PAC: 1.02. N.ASIA: 0.37. N.POLE: 0.72 10 2.5 0.5 -0.5 -1 -2.5 -5 -10 25

> Positive interference of subsequent cycles

All the QC-accepted and 2-solution (|MLE₁|<1)

	ASCAT-ECMWF-buoy comparison (mean buoy winds)					
	ASCAT vs ECMWF	ASCAT vs buoy point wind	Ν			
Default	2.19	1.74	5034			
New	2.17	1.71				

2<u>8</u>

	ASCAT-ECMWF-buoy comparison (mean buoy winds)				
	2DVAR vs ECMWF	2DVAR vs buoy point wind	2DVAR vs ASCAT	Ν	
Default	1.85	1.94	1.17	5034	
New	2.00	1.76	0.74		