The satellite winds in the operational NWP system at Météo-France

Christophe Payan

CNRM UMR 3589, Météo-France/CNRS

13<sup>th</sup> International Winds Workshop, Monterey, USA, 27 June – 1<sup>st</sup> July 2016



## Outline

- Operational NWP configuration upgrades
- AMVs: results with Himawari-8
- Scatterometry: impact of RapidSCAT winds
- RapidSCAT instrumental event
- Summary / Future work



### **Operational NWP configuration**





### An ever-increasing computing power



Peak performance (log10)

## ARPEGE (and AEARP) observations upgrade

#### April 2015 (+20%):

Evolution des cumuls mensuels de nombre d'observations utilisées par type d'observation

- Additional channels from CRIS and IASI
- CSR from METEOSAT-7 and MTSAT
- SAPHIR (microwave) on Megha-Tropiques
- More GNSS (use +Tandem-X +GRACE-B)

2002

SAPHIE

145

- ASCAT-B winds from EARS network
- Dual-MetOp AMVs (monitoring)

#### December 2015:

- Additional CRIS channels
- Himawari-8 AMVs
- RapidSCAT winds
- NPP AMVs (monitoring)



SYNOP/RADOME

AVIONS

# Monthly number of used observations in ARPEGE (monitored excluded)

SCATT

DirOP/COMPAS 02-juin-2016

METEO FRANCE

### Number of observations (Dec 2015 upgrade)

Observation number by type (%)



- IASI data dominates (almost 50%)
- Radiances (all instruments), 85%!
- Satellite winds (AMVs +SCATT) represent only 3% of total



### AMVs coverage



QC + thinning

- A large amount of AMVs is available (until 1.5 M by 6h assimilation window)
- Only around 3/4% are used after QC and thinning, or not still tested



### AMVs impact in ARPEGE analysis

### Degrees of Freedom for Signal (DFS) by obs. type (%)



#### • 0.7 % of used data

#### 1% of used data



### Scatterometer winds coverage



- First RapidSCAT winds assimilated operationally (on 8 Dec 2015)
- May complete the ASCAT coverage, as here, depending on ISS orbit



### Scatterometer winds impact in ARPEGE analysis Degrees of Freedom for Signal (DFS) by observation type in % 2013 2014 to 2015 2015 upgrade







| ( |              |          |        |         |                    |        |
|---|--------------|----------|--------|---------|--------------------|--------|
|   | GPS ground   | 0.63% 📃  | SSMIS  | 3.02%   | SYNOP/SYNOR/RADOME | 0.77%  |
|   | GPS sat      | 5.71%    | GMI    | 0.00%   | SHIP               | 0.21%  |
|   | SATOB        | 7.15%    | AIRS   | 0.69% 📃 | PILOT/PRF          | 1.14%  |
|   | ATOVS HIRS   | 0.88%    | IASI   | 20.23%  | TEMP               | 6.59%  |
|   | ATOVS AMSU-A | 12.14% 📃 | CRIS   | 4.46%   | AIRCRAFTS          | 12.89% |
|   | ATOVS AMSU-B | 6.82% 📃  | GEORAD | 4.95%   | RADAR Vr           | 0.00%  |
|   | SAPHIR       | 2.01% 📃  | SCATT  | 4.96%   | RADAR Hur          | 0.00%  |
|   | ATMS         | 4.46%    | BUOY   | 0.29%   | BOGUS              | 0.00%  |
| ι |              |          |        |         |                    |        |

2% of used data

0.7 % of used data

BOGUS

0.32%

0.00%

4.84% BUOY

### 1% of used data





### Himawari-8 AMVs assimilation

Himawari-8 AMVs volume: available around 5xMTSAT-2, used 3xMTSAT-2 (same QC), +35% of AMVs in the system



 Better fit of model background to AMVs, MTSAT discarded, H8 included, versus OPER

 some differences on bias, not always in the right direction

 Improves the fit to the drop winds above 500hPa, degradation below 700hPa (not shown)



# Himawari-8 AMVs assimilation tests 45 forecasts at 0 UTC, from 14/05 to 01/07/2015

Normalized difference of RMS scores on the Z forecast / radiosondes [%]: — Improvement ---Degradation ---Neutral impact Significance







### 50km RapidSCAT winds (EUMETSAT OSI SAF)



- RMSVD to model bkgrd similar to ASCAT statistics (after QC, mainly rain effect removal)
- Highest differences along the ITCZ, the Gulf Stream and the Kuroshio
- On average, RapidSCAT RMSVD is now close to 2.0 m.s<sup>-1</sup>, 19° for direction RMS, 1.3 m.s<sup>-1</sup> in speed



### RapidSCAT assimilation 47 forecasts at 0 UTC, from 10/12/2014 to 29/01/2015



# 50km SCAT winds (EUMETSAT OSI SAF)



- ASCAT-A&B availability and their departure to FG very stable in time
- More variations with RapidSCAT due to ISS management (attitude, docking) or low SNR events (since Aug. 2015)
- During the **low SNR3** event (Feb to Apr), RapidSCAT blacklisted



#### RapidSCAT low SNR3 event

26 ARPEGE forecasts at 0 UTC (March 2016) with new settings (obs error)

#### Normalized difference of RMS scores on the Z forecast [%]



### Scatt. winds impact in ensemble assimilation AEARP

Var(analysis)/Var(background) mean, AEARP EXP=6951, 25 members Par=RelVorticity105 ~10m, AnValid=20131201H06-20131214H18, Step=6, 55 cases min=0.66 max=1.01 mean=0.86



| 10m relative vorticity error variance reduction | on in AEARP |
|-------------------------------------------------|-------------|
|-------------------------------------------------|-------------|

| HPC<br>resources /<br>Configuration | 4DVAR<br>alone | 4DVAR +<br>AEARP  |
|-------------------------------------|----------------|-------------------|
| Requested processor cores           | 243 960        | 1M374 (x5.6)      |
| Run time (real)                     | 9 days         | 15 days<br>(x1.7) |
| Output volume                       | 20 Tb          | 100 Tb (x5)       |

Required HPC resources for 1 month NWP test

- Error variance reduction near the oceanic surface in AEARP (relative vorticity, divergence) directly linked to the scatterometer coverage
- Run a coupled configuration AEARP/ARPEGE much more costly than ARPEGE alone in term of HPC resource but required for a safe evaluation
- But finally, a new JPL processing settings early April allowed to back to statistics close to before the low SNR3 event and RapidSCAT was re-introduced in assimilation, w/o any change



## Summary

#### Since the last IWW

• All models, from global to mesoscale, increased their resolution and they used more observations, thanks a continuous increase of the computing power

The satellite winds (AMVs and scatterometer) represent a minor amount of used observations, but their weight in the analysis is relatively important

The RapidSCAT winds improve the global forecasts and the tracking of the TCs, and also through their use in AEARP

• Himawari-8 AMVs results are more mixed: even if this dataset remains required over the Asia area, its negative impact in the southern hemisphere against MTSAT would need further investigation



### Future work

#### **Next months**

- Scatterometer winds:
  - technical work ongoing for using a new surface analysis model SURFEX in assimilation mode, impacting the scatterometer observation operator
  - to work also on the bias correction and to revisit the 100km-thinning

 AMVs: to start a global revision of their QC and the specified errors, including the use of new datasets (MetOps, NPP, ...)

#### **Beyond**

- ScatSAT-1, Oceansat-3 (ISRO), CFOSat (NSOAS/CNES)
- GOES-R AMVs
- ADM-Aeolus



# Questions?





## Backup slides



### ARPEGE resolution upgrade (global)

|        | before APRIL                        | 2015 after                                        |  |
|--------|-------------------------------------|---------------------------------------------------|--|
|        | T798c2.4 (10km < ∆x < 60km) L70     | T1198c2.2 (7.5km < ∆x < 37km) L105                |  |
|        | 4DVAR 6h@window, 1h@timeslot:       | 4DVAR 6h@window, 30min@timeslot:                  |  |
| ARPEGE | -T107c1 (~185km) L70, 25 iterations | -T149c1 (~135km) L105, 40 iterations              |  |
|        | -T323c1 (~62km) L70, 30 iterations  | -T399c1 (~50km) L105, 40 iterations               |  |
|        | Fc ranges: 102 / 72 / 84 / 60 hours | Fc ranges: 102 / 72 / <mark>114</mark> / 60 hours |  |



### AEARP (ensemble assimilation) resolution upgrade

|       | before APRIL                                                                                                                                                         | 2015 after                                                                                                                                                           |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AEARP | T399c1 (~50km) L70; 6 members<br>4DVAR 6h@window, 1h@timeslot:<br>-T107c1 (~185km) L70, 25 iterations<br>Covariances updated one time per<br>day, averaged on 4 days | T479c1 (~42km) L105; 25 members<br>4DVAR 6h@window, 30min@timeslot:<br>-T149c1 (~135km) L105, 40 iterations<br>Covariances updated every 6h,<br>averaged on 1.5 days |





15/11/2013 à 6hTU 15/11/2013 à 12hTU Length scale of forecast error correlations for the wind at 500hPa (km), in 2 consecutive assimilation windows





## AROME resolution update

|       | before                                            | APRIL 2015 after                                                                    |   |
|-------|---------------------------------------------------|-------------------------------------------------------------------------------------|---|
| AROME | ∆x=2.5km L60<br>750x720 points<br>3DVAR 3h@window | ∆x=1.3km L90<br>1536x1440 pts + larger area (~ +10%<br>3DVAR 1h@window (~ +50% obs) | ) |



New domain AROME and its relief



### Vertical resolutions **ARPEGE** and **AROME**



better resolution than ARPEGE L105 <10km

### ARPEGE forecast scores: NEW versus FORMER

# ARPEGE RMS forecast score to radiosondes on the geopotential:



#### ARPEGE "NWP" index:



Index based on the RMS forecast scores against radiosondes on 3 parameters at +48h and +72h over Europe



### ALADIN-OM (overseas)

#### Overseas domains:





AROME replacement planned in 2016

- ALADIN-OM replacement by AROME-OM versions in 2016 (ongoing)
- Smaller domains but with a 2.5km grid (8km in ALADIN)
- Without assimilation (2<sup>nd</sup> step)

