
Towards improved height assignment and quality control of AMVs in Met Office NWP

KION

James Cotton, Mary Forsythe, Francis Warrick International Winds Workshop, Monterey, 28 June 2016

- Motivation
- QC in Model Dry Layers
- Low Level Inversion Correction
- Global Impact Experiments

- Height assignment (HA) remains dominant source of error in AMV derivation
- Observation operator: single-level point observation of wind

Current approach to HA errors:

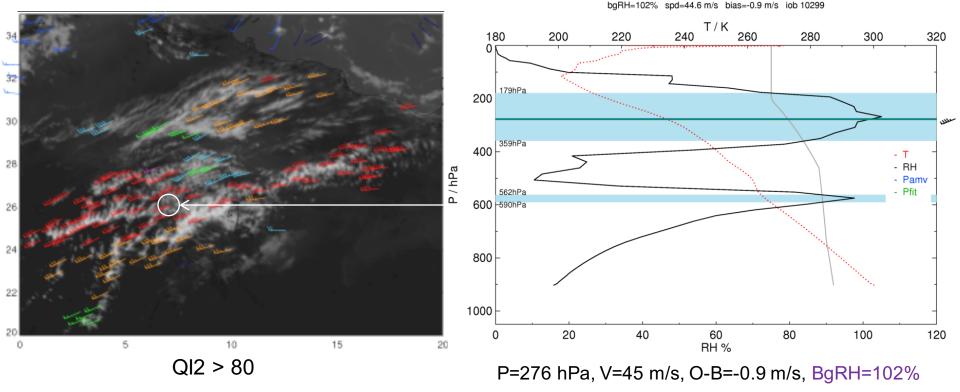
- 1) a-priori blacklist of problem areas with large systematic errors
- 2) down-weight through situation-dependent obs. errors
- 3) bias correction of mean height errors (regional NWP)

Project Aim

Can we use model forecast profiles to further improve handling of HA errors?

- AMVs derived from tracking cloud/WV features investigate quality control of AMVs assigned in *dry layers* of model
- Height correction in presence of inversions

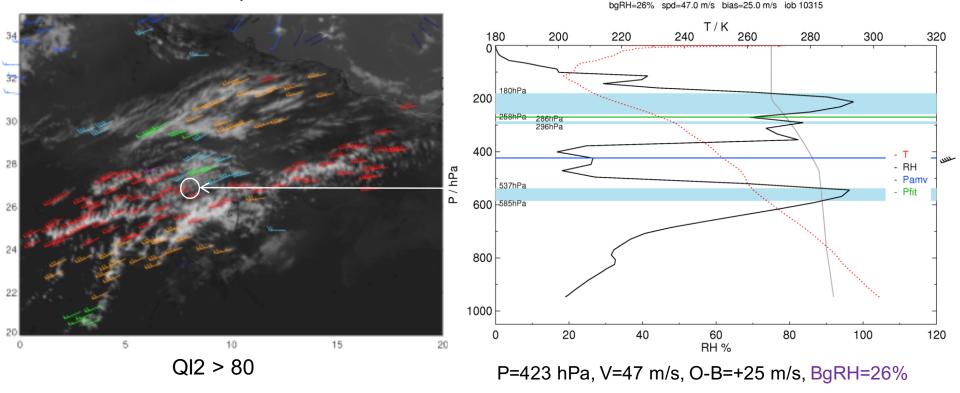
QC in Model Dry Layers


© Crown copyright Met Office

Case study 1. North Africa MSG IR10.8 AMVs at 12:30 UTC, 3 Nov 2014

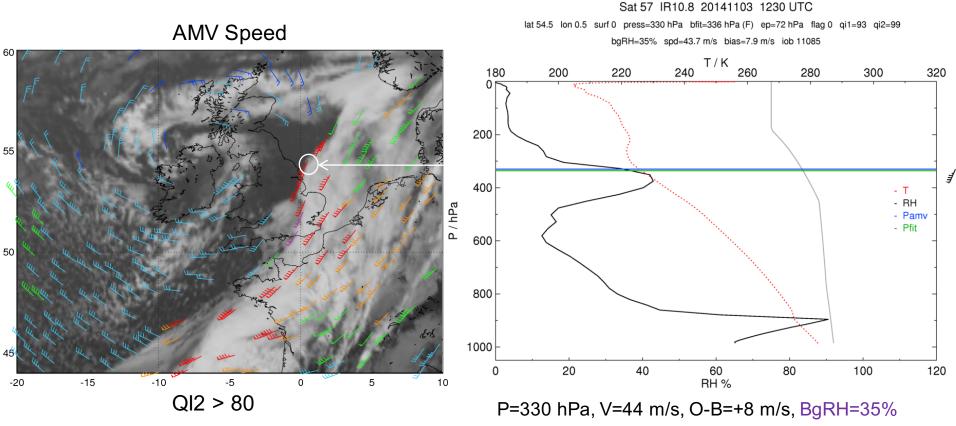
AMV Speed

Sat 57 IR10.8 20141103 1230 UTC lat 26.1 lon 7.2 surf 3 press=276 hPa bfit=279 hPa (F) ep=70 hPa flag 0 qi1=99 qi2=99

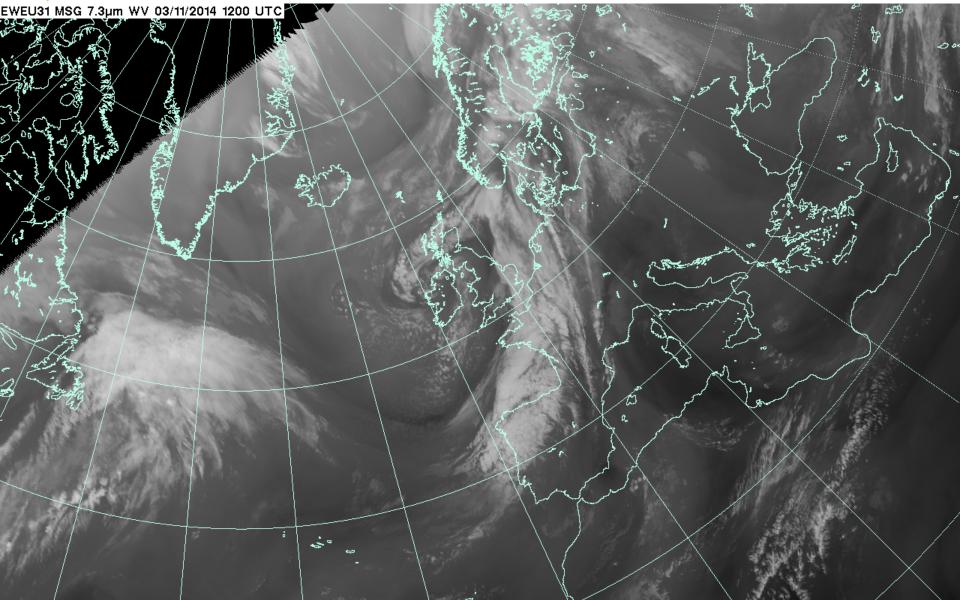

AMV coincident with middle of moist layer and best-fit pressure

Case study 1. North Africa MSG IR10.8 AMVs at 12:30 UTC, 3 Nov 2014

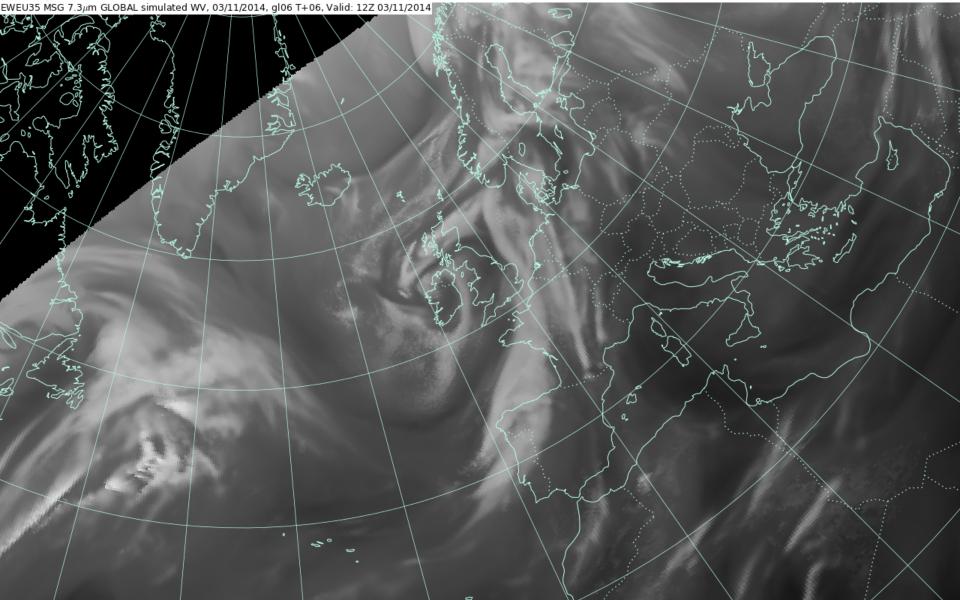
AMV Speed


Sat 57 IR10.8 20141103 1230 UTC lat 26.9 lon 8.1 surf 3 press=423 hPa bfit=269 hPa (F) ep=100 hPa flag 13 qi1=82 qi2=99

AMV assigned in dry slot between 2 moist layers. Large speed bias


Case study 2. NW Europe MSG IR10.8 AMVs at 12:30 UTC, 3 Nov 2014

AMV assimilated, consistent with imagery. Bg RH only 35% - model error?

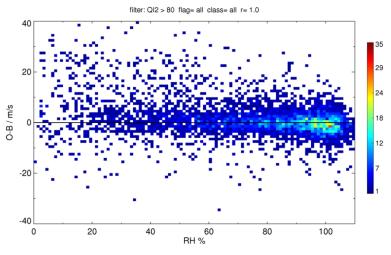


MSG WV7.3 Observed

MSG WV7.3 Simulated T+6

Bg RH as Quality Indicator

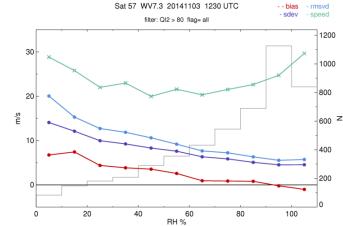
Met Office

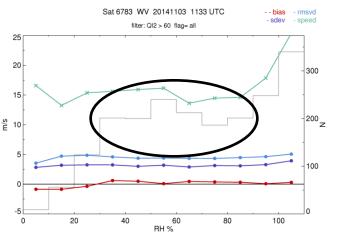

Met-10 WV7.3 Sat 57 WV7.3 20141103 1230 UTC

Num= 4966 bias=1.1 m/s stdev=6.8 m/s min=-44.5 m/s max=48.4 m/s rmsvd=8.2 m/s spd=24.1 m/s

Met-10 WV7.3

MSG


Background RH a good quality indicator for the IR and WV winds, less so for visible

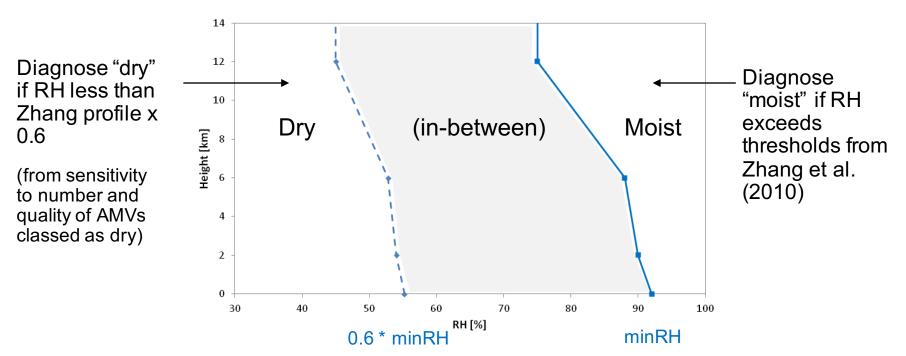

Sat 6783 WV 20141103 1133 UTC

Num= 2039 bias=0.2 m/s stdev=3.3 m/s min=-13.4 m/s max=11.9 m/s rmsvd=4.6 m/s spd=17.2 m/s filter: QI2 > 60 flag= all class= all r= 1.0

40 20 S-B / m/s -20 Aqua WV -40 0 20 40 60 80 100 RH %

Aqua WV

Polar


IR show some increase in **RMSVD** at low RH. WV and **CSWV** have very different distribution

Classification Dry/Moist

Met Office

Diagnose "moist" and "dry" layers by interpolating RH on 70 NWP model levels

Hence classify AMVs as "moist" or "dry", or in-between

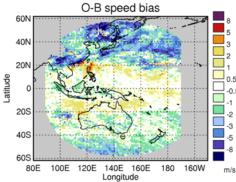
Zhang et al. (2010), Analysis of cloud layer structure in Shouxian, China, using RS92 radiosonde aided by 95 GHz cloud radar, *J. Geophys. Res.*, **115**

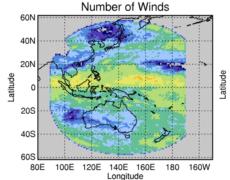
© Crown copyright Met Office

Reject Dry Layer AMVs

			Refere	ence		Dry Lay	er	
Mat Offe	<u>Satellite</u>	Channel	N	RMSVD	Ν	% Reject	RMSVD	% Diff
Met Offic	e Met-7	IR	498918	7.6	412947	17.2	6.2	-18.4
		VIS	340190	3.7	323319	5.0	3.4	-8.1
Jan 2015: QI2 > 80		WV	1043885	8.7	837290	19.8	7.1	-18.4
	Met-10	IR10.8	5440650	6.5	4713189	13.4	5.5	-15.4
		VISO.8	1477934	3.3	1382028	6.5	3.0	-9.1
		HRVIS	4309987	3.7	4092704	5.0	3.4	-8.1
		WV7.3	3648984	9.4	2845035	22.0	6.9	-26.6
for Geo		WV6.2	2438393	7.8	2091766	14.2	6.9	-11.5
		CSWV7.3	996805	10.3	126602	87.3	9.7	-5.8
Q12 > 60		CSWV6.2	544026	10.2	95621	82.4	9.3	-8.8
	MTSAT	IR	4485905	5.4	4203799	6.3	4.6	-14.8
for polar		VIS	725620	2.7	720813	0.7	2.6	-3.7
		WV	2308404	7.0	2016684	12.6	6.2	-11.4
		CSWV	1413296	11.6	530477	62.5	6.9	-40.5
	GOES-13	IR	5274881	4.0	4775800	9.5	3.8	-5.0
		VIS	3770951	2.8	3580127	5.1	2.7	-3.6
		WV	2494480	5.1	2177994	12.7	4.9	-3.9
		CSWV	1109413	5.5	372954	66.4	5.0	-9.1
	GOES-15	IR	4715622	4.0	4341161	7.9	3.8	-5.0
		VIS	3209339	2.6	3063279	4.6	2.5	-3.8
		WV	2659188	5.1	2354476	11.5	4.9	-3.9
		CSWV	924142	5.7	259792	71.9	4.9	-14.0
	MODIS Aqua	IR	348657	4.7	290458	16.7	4.8	2.1
		WV	168448	6.2	138032	18.1	6.4	3.2
		CSWV	668023	4.3	484535	27.5	4.3	0.0
	NOAA-19	IR	222740	4.3	189079	15.1	4.2	-2.3
	EUM Metop-B	IR10.8	2176144	5.6	1882163	13.5	5.6	0.0
	LeoGeo	IR	1830837	4.2	1666527	9.0	4.0	-4.8
			59245862		49968651	15.7		-16.2

60W 40W 20W 0


20E 40E 60E

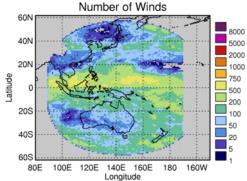

Longitude

Spatial Distribution Jan 2015: QI2 > 80

Q|2 > 80+ Dry Layer Flag O-B speed bias O-B speed bias 60N 60N [60N 40N 40N 40N 20N 20N 20 Latitude Latitude -atitude 0.1 20S 205 20S 2 -3 405 405 40S 60S 605 60.9 80E 100E 120E 20E 40E 60W 40W 20W 0 60E 60W 40W 20W 0 20E 40E 60E m/s Longitude Longitude Number of Winds Number of Winds 60N 60N 8000 40N 40N 5000 2000 20N 20N 20N 1000 Latitude Latitude 750 atitude 500 200 205 20S 205 100 **5**0 40S 405 405 20 60S

+ Dry Layer Flag

140E 160E


Longitude

Q|2 > 80

O-B speed bias

180

160W

MTSAT-2 IR above 400 hPa

MSG IR10.8 below 700 hPa

605

60W 40W 20W

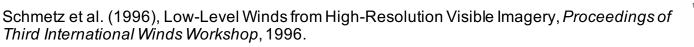
0 20E 40E 60E

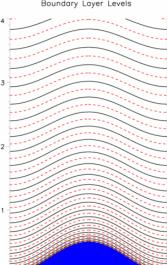
Longitude

Low Level Inversion Correction

© Crown copyright Met Office

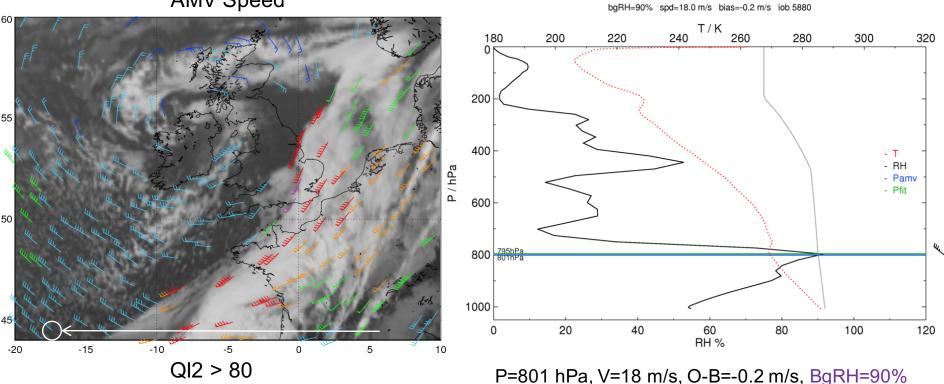
Why an Inversion Correction?


Met Office


From IWW3 Schmetz et al. (1996)

- Important that low level winds are assigned within boundary layer as directional variations can increase rapidly above the capping inversion.
- (Low) clouds travel with wind at cloud-base which is usually within atmospheric boundary layer (ABL)

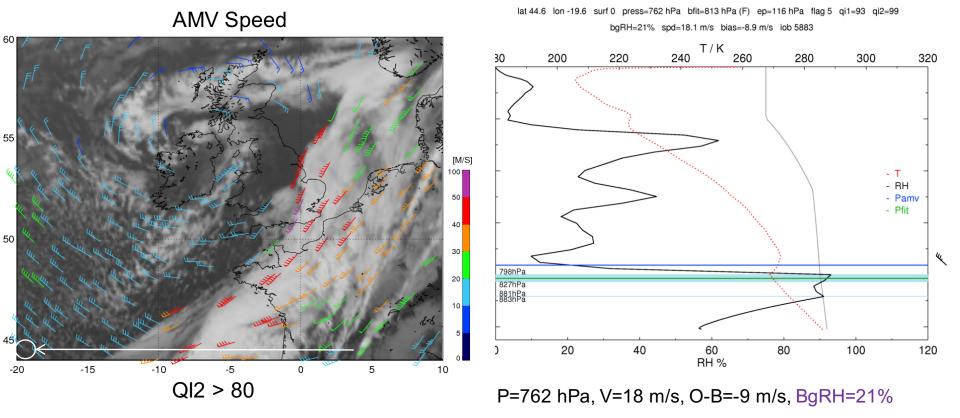
Most GEO AMVs already account for inversion situations, but there remain potential benefits to doing within NWP


- Full vertical model resolution (more levels within ABL to resolve inversion)
- Highest temporal resolution and update frequency (e.g. 3-hrly x4 /day, rather than 6-hrly x2 /day)
- Consistent with model characteristics

Case study 3. NW Europe MSG IR10.8 AMVs at 12:30 UTC, 3 Nov 2014

AMV Speed

Sat 57 IR10.8 20141103 1230 UTC lat 44.5 lon -17.4 surf 0 press=801 hPa bfit=796 hPa (F) ep=105 hPa flag 5 gi1=99 gi2=99


Base of temperature inversion, zero bias

© Crown copyright Met Office

Case study 3. NW Europe MSG IR10.8 AMVs at 12:30 UTC, 3 Nov 2014

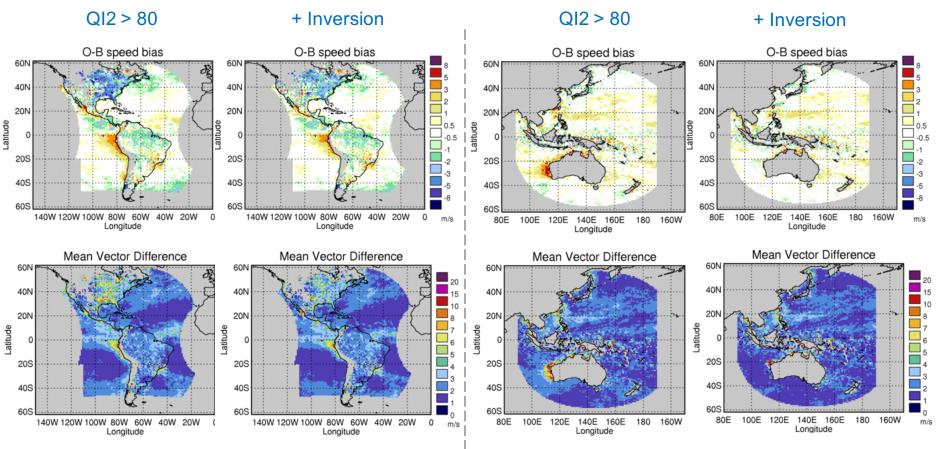
Sat 57 IR10.8 20141103 1230 UTC

Assigned ¹/₂ way up from inversion base. Same speed, large bias, bg RH 21%.

AMV heights corrected if following criteria are met:

- IR and VIS channels only
- Inversion detected (only consider inversion layer closest to surface)
- inversion strength >= 2K to be significant
- Observed pressure > 700 hPa
- AMV assigned above height of inversion base
- Check that inversion top is located in dry layer (capping inversion)
- Only apply to Geostationary AMVs, with surface type = land or sea
- MSG apply only over sea

Not considered for polar winds due to different characteristics of inversion profiles (non-capping, nr-surface inversions)



Apply Inversion Correction Jan 2015, QI2 > 80, inversion corrected data only

		N low level	% low level	RMSVD at	RMSVD at		
Satellite	Channel	corrected	corrected	original height	corr. height	% Diff	
Met-7	IR	29226	18.3	4.5	4.3	-4.4	
	VIS	45481	13.4	4.0	3.3	-17.5	
Met-10	IR10.8	197064	7.9	6.0	6.0	0.0	
	VIS0.8	101842	6.9	4.4	4.2	-4.5	
	HRVIS	195329	4.5	5.8	5.9	1.7	
MTSAT	IR	288812	11.5	3.8	3.5	-7.9	
	VIS	125356	17.0	3.2	2.0	-37.5	
GOES-13	IR	284189	12.6	2.3	1.9	-17.4	
	IR3.8	1143015	14.0	2.6	2.1	-19.2	
	VIS	604504	16.9	2.8	1.9	-32.1	
GOES-15	IR	181680	9.1	2.2	2.0	-9.1	
	VIS	354990	11.4	2.8	2.0	-28.6	
		3551488	11.4			-16.2	
			/			Ť	
		% of low le ve correctio		RMSVD reduced by 16% o average (over 30% for GOES VIS)			

Spatial Distribution Jan 2015: QI2 > 80

MTSAT-2 VIS below 700 hPa

GOES-13 VIS below 700 hPa

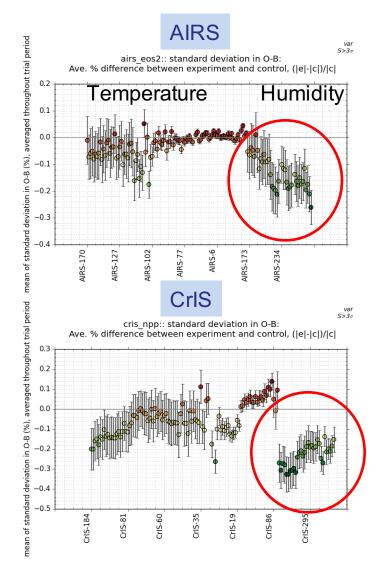
Impact Experiments

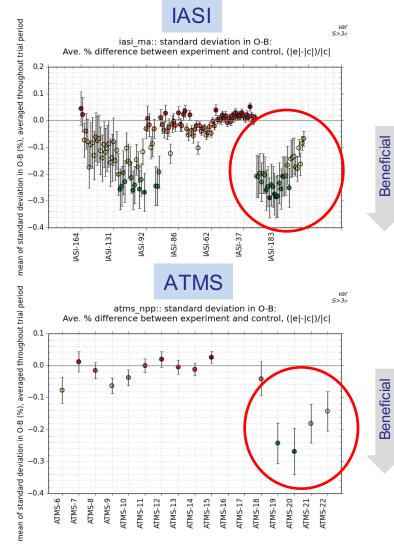
© Crown copyright Met Office

Test inversion correction + dry layer QC, in combination*

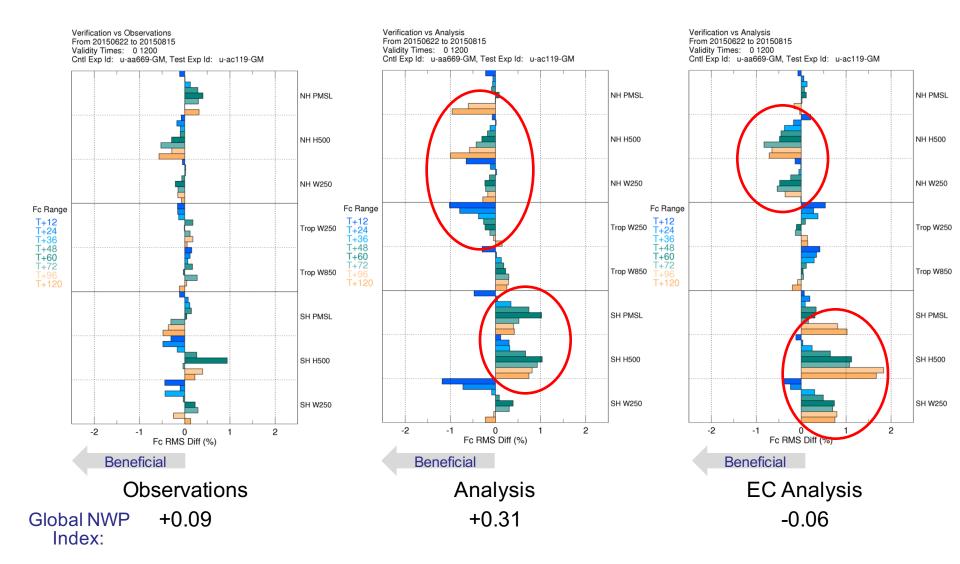
- Inversion applied 1st, then QC
- Two seasons. Summer: 20150622 20150815 (55 days), Winter : 20151112 – 20160115 (65 days)
- PS37 baseline, 4D-Var, N320, 70 levels, uncoupled, hybrid VAR N108/N216

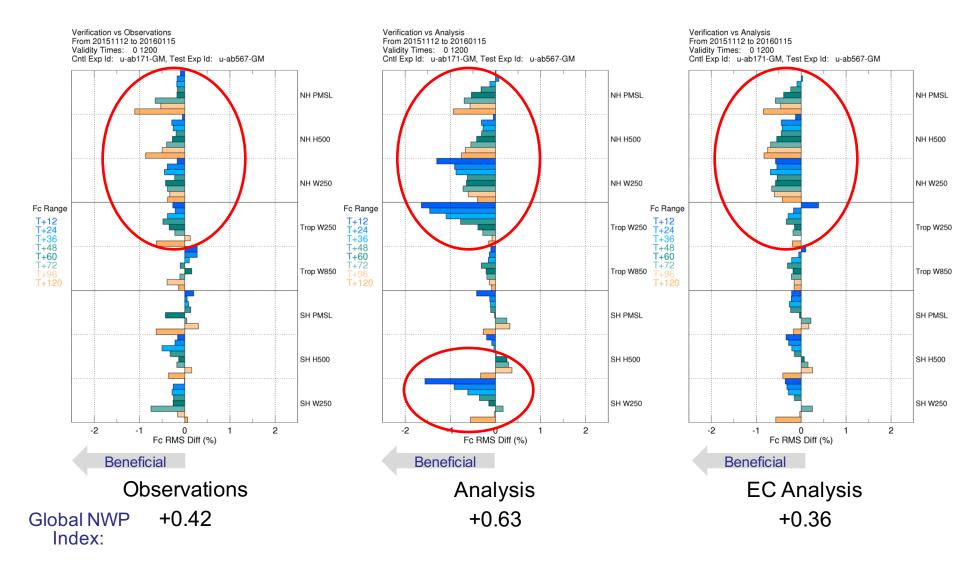
VAR Statistics


- AMV counts reduced by 10% per cycle
- AMV initial penalty reduced by ~17%
- AMV RMS U-wind/V-wind component reduced by 6% / 5% \checkmark
- Small improved background (T+6) fit to humidity sounding channels


* also trialed as separate components

Background Fits to Adv IR and MW Sounders


Small benefit for 'humidity' sounding channels



Change in Forecast RMS (I) Summer: June – Aug 2015

Change in Forecast RMS (II) Winter: Nov 2015 – Jan 2016

• Background RH a good quality indicator for Geo IR and WV winds, less helpful for polar winds

- Applying a height-dependent RH threshold we can reject AMVs assigned to dry layers of the model (sensitive to model errors)
 - Main benefit is for Geo data, particularly MSG (25% reduction in RMSVD for WV 7.3) and MTSAT-2
 - Little impact on polar winds, very high reject-rate for Geo clear-sky WV
- Applying an inversion height correction for 11% of low level winds
 - Large benefit for GOES-13 over both land and sea, including the Sc region, particularly for VIS (30% reduction in RMSVD)
 - Not applying over land for MSG
- Impact experiments combining inversion correction and dry layer QC
 - Number of AMVs assimilated reduced by 10%, background RMS fit improved ~5%
 - Small improvement in background fit to microwave and advanced IR sounders humidity channels
 - Positive impact on Fc RMS errors in NH winter season, some degradation in SH vs analysis in summer season
- Currently being tested as part of PS38 due operational Sept 2016

Thank you for listening

Questions?

Spare Slides

© Crown copyright Met Office

180

150W 120W 90W

-0.8

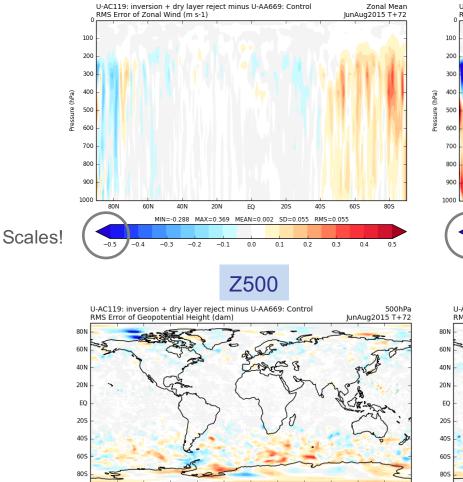
-0.6

-1.0

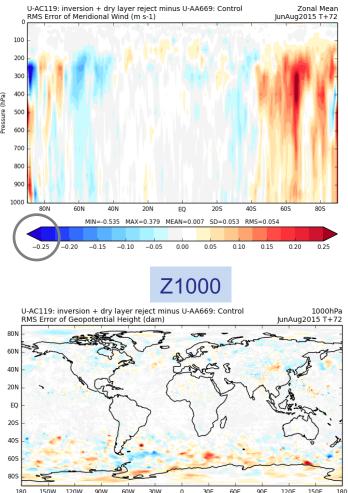
60W

-0.4

30W


-0.2

0 30E 60E


0.0

Day 3 RMS Error Difference Summer: June – Aug 2015

U-wind

V-wind

150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E MIN=-0.910 MAX=1.468 MEAN=0.015 SD=0.104 RMS=0.105

0.0

0.2

0.4

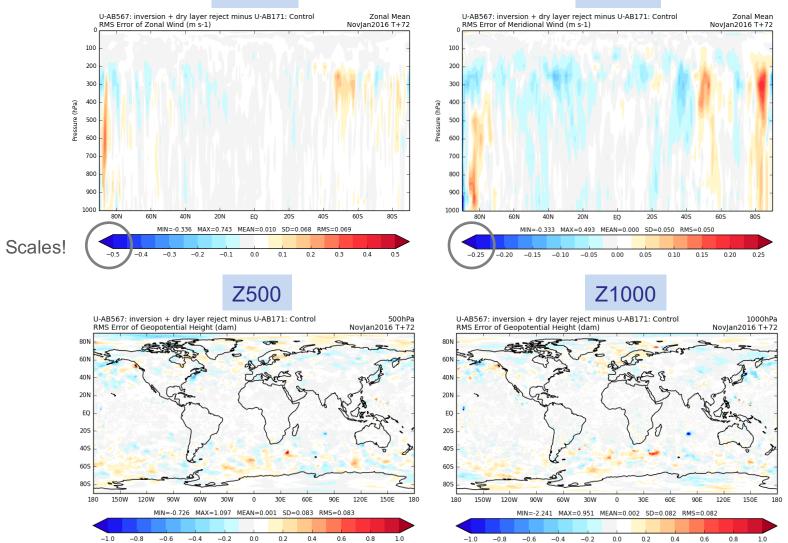
0.6

0.8

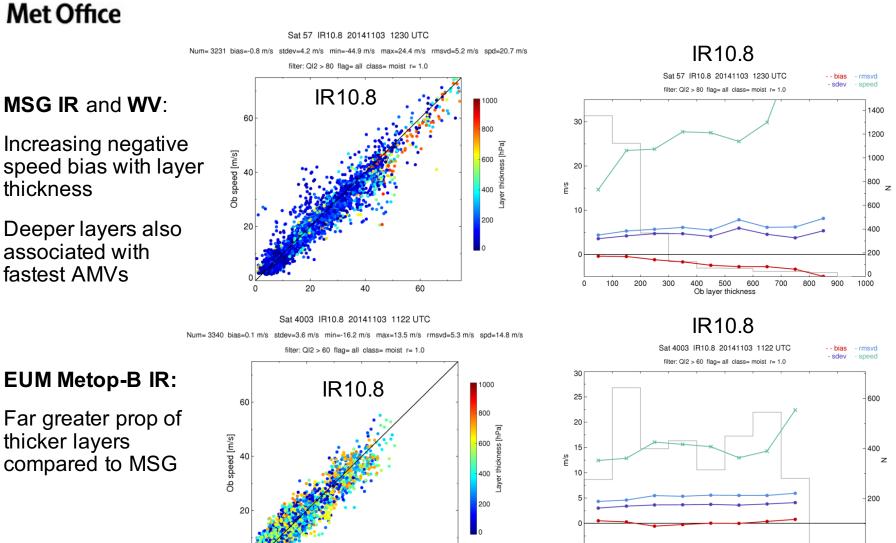
1.0

90E

120E 150E 180

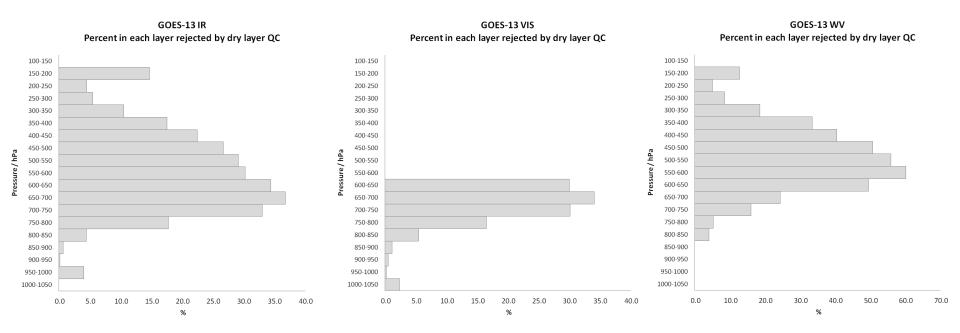

0.2 0.4 0.6 0.8 1.0 -1.0 -0.8 -0.6 -0.4 -0.2

Day 3 RMS Error Difference Winter: Nov 2015 – Jan 2016


U-wind

V-wind

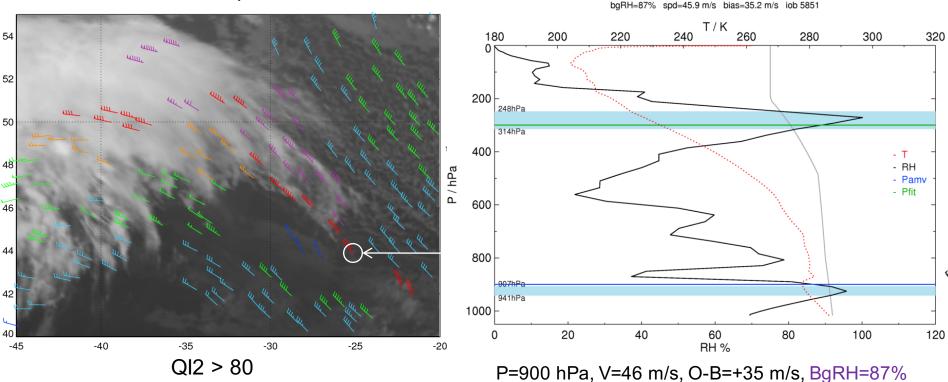
Moist Layer Thickness



Bg speed [m/s]

Ob laver thickness [hPa]

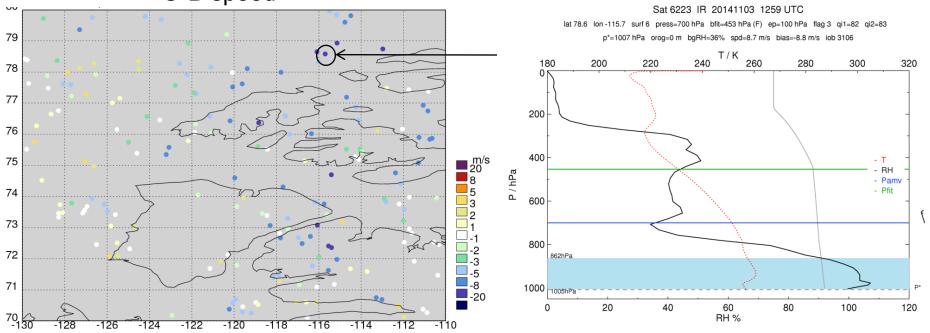
Percent of data rejected in each 50 hPa layer


Highest proportion of data rejected at mid-level

Case study 3. North Atlantic MSG IR10.8 AMVs at 12:30 UTC, 3 Nov 2014

AMV speed

Sat 57 IR10.8 20141103 1230 UTC lat 43.8 lon -25.1 surf 0 press=900 hPa bfit=300 hPa (T) ep=80 hPa flag 11 qi1=71 qi2=89


AMV tracking high level, assigned to low level (Bg RH 87%)

Case study 4. Canadian Arctic NOAA-19 AMVs at 11:21-12:59 UTC, 3 Nov 2014

Met Office

O-B speed

Surface = Sea ice.

Inversion near the surface. Stays moist well above inversion top