

Comparison of the Optimal Cloud Analysis Product (OCA) and the GOES-R ABI Cloud Height Algorithm (ACHA) Cloud Top Pressures for AMVs

Steve Wanzong (CIMSS) Andrew Heidinger, Jaime Daniels (NOAA) Régis Borde and Phil Watts (EUMESAT) Wayne Bresky (IMSG@NOAA)

Motivation

- AMV generation is increasingly reliant on cloud top pressure (CTP) generated from separate cloud retrieval algorithms.
- Groups such as the International Cloud Working Group (ICWG) compare cloud products (pixel level) but don't focus on the subset of pixels that are used as AMV tracers.
- Beyond product performance, the potential use of diagnostic parameters like the cloud pressure uncertainty are important to investigate for usage of cloud pressures by AMV algorithms.

Goals

• Develop an analysis to allow for a study of the impact of CTP performance for the AMV applications.

• Use ACHA (NOAA) and OCA (EUMETSAT) as the first products to test out analysis concepts.

• Extend this analysis to other pixel level cloud algorithms and link to the CTP analysis being done in the ICWG.

The Process

- Download October 2015 (hourly) Meteosat-10 OCA from the Eumetsat archive in GRIB2 format.
- Convert OCA GRIB2 files into HDF4.
- Run matching hourly ACHA analysis and read in OCA fields into auxiliary variables to create one level2 HDF4 file.
- Run hourly AMVs using the above level2 HDF4 file for cloud information, and the GOES-R tracking framework.
 - Run once for ACHA CTP.
 - Run once for OCA CTP.
- Conduct collocations with NASA CALIPSO/CALIOP Cloud Layer Product.

Cloud Variables Read from Level2 Files for AMV Production ACHA AMVs

Cloud Analysis Algorithm	Variable
ACHA	Cloud Mask
ACHA	Cloud Top Pressure
ACHA	Cloud Height Quality Flags
ACHA	Cloud Top Temperature
ACHA	Cloud Top Height
ACHA	Cloud Phase
ACHA	Cloud Type
ACHA	Inversion Flag
ACHA	Cloud Top Pressure Error
ACHA	Cloud Top Temperature Error
ACHA	Cost

Cloud Variables Read from Level2 File for AMV Production OCA AMVs

Cloud Analysis Algorithm	Variable
ACHA	Cloud Mask
OCA	Cloud Top Pressure – Layer 1
ACHA	Cloud Height Quality Flags
ACHA	Cloud Top Temperature
ACHA	Cloud Top Height
OCA	Cloud Phase
ACHA	Cloud Type
ACHA	Inversion Flag
OCA	Cloud Top Pressure Error – Layer 1
ACHA	Cloud Top Temperature Error
OCA	Cost

DIRECT COMPARISONS OF ACHA & OCA AT THE PIXEL LEVEL

Review of OCA and ACHA

Similarities:

- 1. Optimal Estimation Algorithms.
- 2. Use fast radiative transfer models fed with copious amounts of NWP ancillary data.
- 3. Treat multi-layer clouds.
- 4. Generate a cost values that can indicate failures of the retrievals.

Differences: OCA

- Input = [0.6, 0.8, 1.6, 3.9, 6.2, 7.3, 8.7, 9.7, 10.8, 12, 13.4 μm] + cloud mask
- O.E. Output = [COT, CTP, CRE, Phase, COT*, CTP*]
- CTP uncertainty generated directly from O.E. matrices
- Includes a solar component so that COT and CRE not limited by the IR sensitivity.

ACHA

- Input = [6.2, 10.8, 13.4 μm]** + cloud mask + cloud phase + multi-layer flag.
- O. E. Output = [CTT, CEMS, β , CTT*]
- Derived Output = [CTP, CTH, COT, CRE, CTP*, CTH*]
- COT and CRE are derived solely for IR obs. so COT saturates above 4.
- CTP uncertainty generated from O.E. CTT errors and factors based on lapse rates.
- ACHA feeds into DCOMP a solar reflectance O.E. algorithm for daytime COT and CRE.

COT*, CTP*, CTH* = value of lower cloud when a multilayer retrieval is done ** ACHA input is always 2 or 3 channels which can include 6.2, 8.5, 11, 12 or 13.3 μ m

SEVIRI EXAMPLES

- ACHA and OCA data from October 2015 acquired.
- Examples shown on the right. CTP on top and CTP uncertainties on bottom.
- AMV data generated from 15 minute triplets centered on the hour.

October 11, 2015

CTP Uncertainty Comparison

• Correlation is greater at night than day.

Scatterplot of ACHA (y-axis) and OCA (x-axis) CTP pressure uncertainties for MSG SEVIRI data on October 11, 2015. Data is all data and not limited to AMV targets.

- ACHA is very correlated with cloud emissivity (day and night).
- OCA is also correlated with cloud emissivity at night but not at day.
- Uncertainties should vary. OCA uses more channels and all channels can contribute.
- How can this be "standardized" for AMV use?

CALIPSO COMPARISONS

CALIPSO COMPARISONS

Summary

No Optical Depth or Phase Matching

CALIPSO COMPARISONS

Optical Depth > 1 and Phase Matched

distribution towards lower levels.

- **Filter narrows** spread at high levels.
- Not much • impact on bias.
- Phase matching is more effective than COD filter.

AMV Heights Overlaid on CALIPSO/CALIOP

- Grey regions are the CALIPSO CALIOP cloud layers
- Small black points are the raw ACHA retrievals
- Green points are ACHA AMV heights
- Red points are OCA AMV heights.
- AMV height assignment process can result in heights that differ from pixel level ACHA or OCA

AMV Heights Overlaid on CALIPSO/CALIOP

- Grey regions are the CALIPSO CALIOP cloud layers
- Small black points are the raw ACHA retrievals
- Green points are ACHA AMV heights
- Red points are OCA AMV heights.
- AMV height assignment process can result in heights that differ from ACHA or OCA

GOES-R AMV CLOUD PRESSURES

AMV CTP Differences (11 µm)

OCA - BFIT

AMV CTP Differences (11 μ m)

October 11, 2015

AMV CTP Differences (6.7 μm)

AMV CTP Differences (6.7 µm)

October 11, 2015

Conclusions

- An initial analysis package has been developed to facilitate progress in improving cloud height products for AMV applications.
- OCA and ACHA are used as examples, but this can be expanded to any pixel level CTP product.
- Preliminary findings are:
 - OCA and ACHA are similar, but do have systematic differences that warrant study.
 - CTP uncertainties show correlation but their use in AMV quality screening is not obvious.

Questions

- Does the standard performance comparison between OCA and ACHA predict the AMV performance?
- Since both OCA and ACHA are O.E. algorithms, do their uncertainties agree?
- Does the AMV community want standard cloud product uncertainty metrics?

Backup Material

Cloud Pressure Uncertainty

Summary

- Both ACHA and OCA make CTP uncertainties.
- ACHA uncertainties are the same day and night.
- OCA has lower uncertainties during the day..
- ACHA and OCA nighttime CTP uncertainties are correlated with cloud emissivity (from ACHA).
- The ICWG is expanded its intercomparisons to include CTP uncertainty.

October 11, 2015 03:00 UTC

GOES-R AMV Analysis

• Steve Wanzong

OCA and ACHA heights run through the GOES-R winds algorithm

OCA DESCRIPTION IN MORE DETAIL

EUMETSAT Optimal Cloud Analysis: 1. Optimal Estimation

- 2. Define Measurements: *y* = [0.6, 0.8, 1.6, 3.9, 6.3, 7.2, 8.7, 9.6, 10.8, 12.0, 13.4]
- 3. Have a fast forward model y(x) (and gradient model)
- 4. Find state x that maximises P(x|y):

Radiance information Prior information

$$P(x \mid y) = \exp^{(y_m \mid y(x))S_y^{-1}(y_m \mid y(x))^T} \cdot \exp^{(x \mid x_b)S_x^{-1}(x \mid x_b)^T}$$

Minimise* w.r.t. X:

$$J = \begin{pmatrix} y_m & y(x) \end{pmatrix} S_y^{-1} \begin{pmatrix} y_m & y(x) \end{pmatrix}^T + \begin{pmatrix} x & x_b \end{pmatrix} S_x^{-1} \begin{pmatrix} x & x_b \end{pmatrix}^T$$

* Levenburg Marquardt

EUMETSAT Optimal Cloud Analysis: 2. y(x) Fast Forward Model

EUMETSAT Optimal Cloud Analysis: 3. Single/Multi-layer Strategy

EUMETSAT

AWG Cloud Height Algorithm (ACHA)

- Developed first as part of GOES-R Algorithm Working Group (AWG).
- Also an Optimal Estimation (OE) but IR-only
- Support multiple modes each mode is a channel combination (e.g. mode 8 = 11, 12,13.3 μm). Supports many sensors – AVHRR, MODIS, GOES-IP, GOES-R, SEVIRI, MTSAT, COMS, VIIRS, AHI
- Fundamental output is Cloud Temperature, emissivity and 11/12 β (i.e. an IR Angstrom exponent related to microphysics). This makes the Kernel matrix an easy calculation.
- Cloud Height, Pressure, optical depth and particle size are derived from fundamental outputs.
- Requires no LUTS. Ping Yang's IR microphysical library used to make regressions for relating emissivity variations.
- Multi-layer clouds are modelled by assuming the surface is the lower cloud. Only lower cloud temperature is retrieved.

Comparison of Heights Used for Winds

- Steve Wanzong modified CLAVR-x to read OCA Level-2 files from SEVIRI and to ingest OCA and ACHA into CLAVR-x Level-2 output.
- GOES-R Winds algorithm applied to these heights.
- Height comparison below is only for the final heights of the wind vectors after the filtering and data rejection of the GOES-R Winds Logic.
- These are the 10.8 μm Wind Vectors. Complete analysis shown at IWWG.

October 12, 2015 – All time periods

OCA = Eumetsat Height, ACHA = NOAA Height

Cloud Emissivity

Cloud Emissivity

