Forecast Sensitivity - Observation Impact (FSOI) Inter-comparison Experiment

Rolf Langland, Naval Research Laboratory (NRL)
Tom Auligné, Joint Center for Satellite Data Assimilation (JCSDA)
Ron Gelaro, NASA, Global Modeling and Assimilation Office (GMAO)
Rahul Mahajan, David Groff, NOAA, National Weather Service (NWS)
Jianjun Liu, NOAA’s Satellite and Information Service (NESDIS)
James Cotton, Larry Morgan, UK Met Office
Yoichiro Ota, Japan Meteorological Agency (JMA)
FSOI Comparison Study Motivation

- Several NWP centers compute FSOI routinely to monitor/understand/tune their DA system. Opportunity to compare impacts in systems with different DA methods and different mix of assimilated observations.
- Impact of AMVs and other wind observation data.
- Satellite vs. in-situ data, TLM/ADJ vs ensemble DA.
- Are relative impact of various observation types comparable?
- Can we learn from similarities/differences to improve NWP systems and DA procedures?

- NWP Centers that participated: NRL, GMAO, EMC, Met Office, JMA
FSOI vs. data-denial (OSE) experiments

- FSOI quantifies impact of all assimilated observations on a selected forecast metric ... shows if any observation [or set of observations] decreases or increases forecast error ...
- OSE shows impact of one selected change to the observation system on all aspects of forecast ... not able to partition impact of various observation types
Forecast Sensitivity – Observation Impact (FSOI)
Langland and Baker (Tellus, 2004)

NAVGEM ADJOINT

Adjoint-derived (single outer-loop) observation impact

\[\delta e \approx d^T K^{-1} \left[M_b^T e(x_b^f) + M_a^T e(x_a^f) \right] \]

Innovation vector

Ensemble-derived observation impact

\[\delta e \approx d^T R^{-1} L (H X_a^{0}) X_a^{fT} \left[e(x_b^f) + e(x_a^f) \right] \]
Experimental Design

• **Time period:** 3-month DJF 2014-15, 00UTC & 06UTC analysis times

• **Verification:** 24h forecast against self-analysis

• **Metric:** global total dry energy (surface-100hPa)

• **Adjoint:** dry plus moist physics, as available

• **Ensemble:** flow-following localization

Results shown here are preliminary

[only global summary plots of impact at 00UTC will be shown]
Participating NWP Centers

<table>
<thead>
<tr>
<th>NWP Centers</th>
<th>NRL</th>
<th>GMAO</th>
<th>Met Office</th>
<th>JMA Adjoint</th>
<th>JMA Ensemble</th>
<th>EMC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis System</td>
<td>4DVar In Observation Space</td>
<td>Hybrid 3DVar</td>
<td>4DVar</td>
<td>4DVar</td>
<td>LETKF re-centered via 4DVar</td>
<td>EnKF re-centered via 4DEnVar</td>
</tr>
<tr>
<td>FSOI Technique</td>
<td>Adjoint</td>
<td>Adjoint</td>
<td>Adjoint</td>
<td>Adjoint</td>
<td>Ensemble</td>
<td>Ensemble</td>
</tr>
</tbody>
</table>
| Experiment Resolution | Model: T425L60
Adjoint: T119L60 | Model: 25km DA: 50km En: 100km | Model: N320 (40km) Adjoint: N216 (60km) | Model: TL959L100
Adjoint: TL319L100 | Ensemble: (x50) TL319L100 | Ensemble: (x80) T254 |
| Specific Considerations | Super-obbing for AMVs | QC = channel selection + dynamical observation error | ~30% cycles discarded due to spurious impacts | | | | | | | | | | | Additional thinning of observations except for aircraft data |
Observation Count at 00UTC

- Radiosonde
- Ship
- Buoy
- Land Surface
- Aircraft
- PIBAL
- GPSRO
- Geo Wind
- MODIS Wind
- AVHRR Wind
- AIRS
- AMSUA
- MHS
- ATMS
- CrIS
- HIRS
- IASI
- Seviri
- GOES

Observation Count per Analysis

- JMA_adj
- GMAO
- NRL
- MET
- JMA_ens
- EMC
Fractional Ob Impact: Satellite Radiances

Ensemble DA Methods

- AIRS
- AMSUA
- MHS
- ATMS
- CrIS
- HIRS
- IASI
- Seviri
- GOES
Fraction of Neutral Impact-Observations

Ensemble DA Methods

- Radiosonde
- Ship
- Buoy
- Land Surface
- Aircraft
- PIBAL
- GPSRO
- Geo Wind
- MODIS Wind
- AVHRR Wind
- AIRS
- AMSUA
- MHS
- ATMS
- CrIS
- HIRS
- IASI
- Seviri
- GOES
FSOI Inter-comparison Summary

- Largest AMV impacts in Navy Global system
- Smallest AMV impacts in EMC & JMA ensemble-DA systems
- Impacts depend on amount of AMV and other observation data that is assimilated
- Thinning or super-ob procedures
- Assimilation method: TLM/ADJ vs. ensemble
- Ensemble methods appear less-accurate at quantifying sensitivity for observations with small individual impacts (e.g., satellite obs) ...
Questions about the FSOI inter-comparison study?
Observation Impact at 00UTC: Observation Count

Radiances

Other Observations
Observation Impact at 00UTC: Impact per Observation

24-h Observation Impact Summary
Global Domain, 00Z DJF 2014-15
Impact per Observation

- AIRS
- AMSU-A
- MHS
- ATMS
- CrIS
- HIRS
- IASI
- Seviri
- GOES

Impact per Observation (J/kg)

- Large impact-per-ob...

10^{-6}

10^{-4}

Radiances

Other Observations

TOTAL
Observation Impact at 00UTC: **Impact per Observation**

Radiances

- AIRS
- AMSUA
- MHS
- ATMS
- CrIS
- HIRS
- IASI
- Seviri
- GOES

Other Observations

- Radiosonde
- Ship
- Buoy
- Land Surface
- Aircraft
- PIBAL
- GPSRO
- Geo Wind
- MODIS Wind
- AVHRR Wind

Impact per Observation (%): 10^{-3}, 10^{-2}
Impact < 0 à Beneficial
Impact > 0 à Detrimental
ε = 10 - 10
Impact < -ε à Beneficial
Impact > ε à Detrimental
-ε < Impact < ε à Neutral

Observation Impact at 00UTC: **Fraction of Beneficial Observations**

- **JMA_ens 24-h Observation Impact Summary**
 - Global Domain, Fraction of Beneficial Observations

- **JMA (Ensemble) 24-h Observation Impact Summary**
 - Global Domain, 00Z DJF 2014-15
 - Fraction of Beneficial Observations

- **Observation Count per Analysis**
FSOI TLM/ADJ vs. Ensemble methods

Only ~20% of the forecast error metric projects onto ensemble structures, so observation sensitivity may be not well-represented with ensemble methods [Problems with ensemble localization, inflation factors and other issues]. Implications for FSOI with ensemble methods, and also for ensemble DA itself, such as 4dENS-Var, as opposed to 4DVAR with TLM/ADJ.

Observation impact with ensemble method is artificially changed by ensemble “inflation factors.”