

Use of GOES-R Advanced Baseline Imager (ABI) Proxy Data to Assess the Performance of the GOES-R Winds Algorithm

Jaime Daniels

NOAA/NESDIS, Center for Satellite Applications and Research

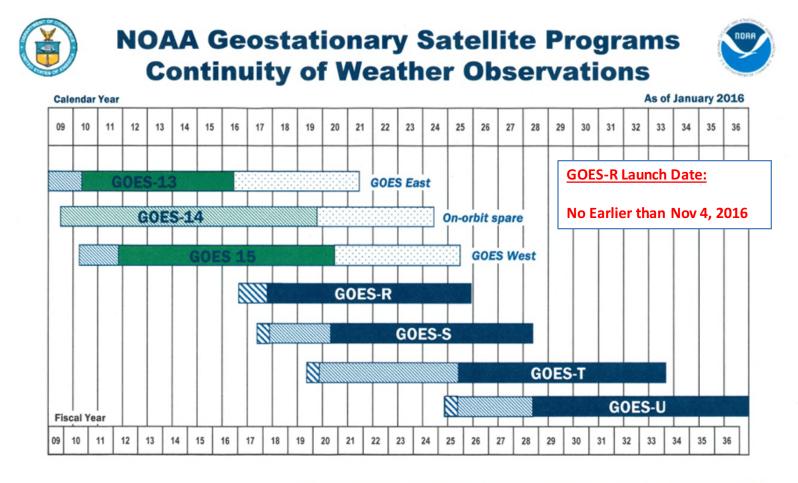
Wayne Bresky, Andrew Bailey, Americo Allegrino IM Systems Group (IMSG)

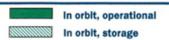
Steve Wanzong & Chris Velden

Cooperative Institute for Meteorological Satellite Studies (CIMSS)

IWW13 Monterey, CA

- Latest on GOES-R
- Review of the GOES-R Winds Algorithm
- Examples and Lessons Learned Using Available ABI Proxy Data
- Summary




- Latest on GOES-R
- Review of the GOES-R Winds Algorithm
- Examples and Lessons Learned Using Available ABI Proxy Data
- Summary

GOES-R Series Maintains Continuity of NOAA's GOES Program

Approved: Assistant Administrator for Satellite and Information Services

Fuel-Limited Lifetime Estimate

Planned On-orbit Storage
Test & Checkout



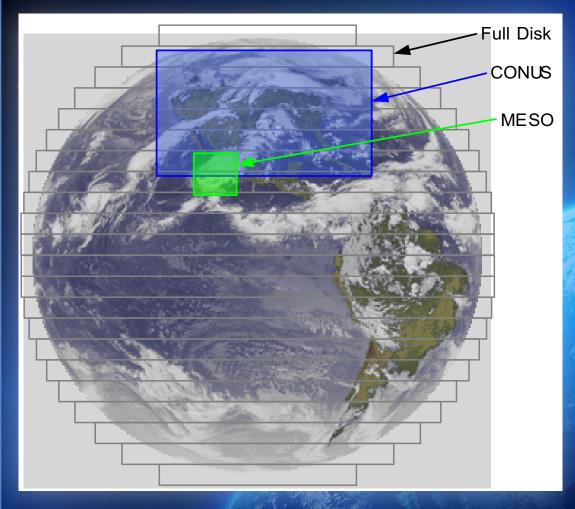
GOES-R ABI Enhanced Capabilities Expected to Bring Improved Level-2 products

NASA

- Higher Spectral Resolution
 - Can see and retrieve new phenomena
- Higher Spatial Resolution
 - Higher fidelity imagery and L2 products; information at smaller scales now observed
- Higher Temporal Resolution
 - Physical and dynamical processes are now captured; new information to exploit and be used by user community
- Improved Radiometrics
 - Translate to more accurate products
- Improved Navigation and Registration
 - More accurate products and improved utilization of them

All of these things contribute to one being able to observe and retrieve phenomenon not previously observed before

G-14 IMG B1 (0.62 UM) 21 AUG 13 19:16UTC NOAA/ASPB MeIDAS


GOES-14 provided very unique information and offers a glimpse into the possibilities that will be provided by the ABI on GOES-R.

The Advanced Baseline Imager						
	AE		Current GOES Imager			
Spectral Coverage	• 16	bands	5 bands			
Spatial resolution 0.64 μm Visible Other Visible/ne Bands (>2 μm)	ear-IR 1.0	i km km	Approx. 1 km n/a Approx. 4 km			
Spatial coverage Full disk CONUS Mesoscale	Scan Mode 3 4 per hour 12 per hour Every 30 sec	Scan Mo 12 per hou		8 hrly)		
Visible (reflective bands) On-orbit calibration Yes			No			

Advanced Baseline Imager (ABI)

Scan modes for the ABI:

Mode 3:

Full disk images every 15 minutes CONUS images every 5 minutes Mesoscale images (2) every 1 minute

Mode 4: Full disk images every 5 mins

AMV Product Refresh Rate:

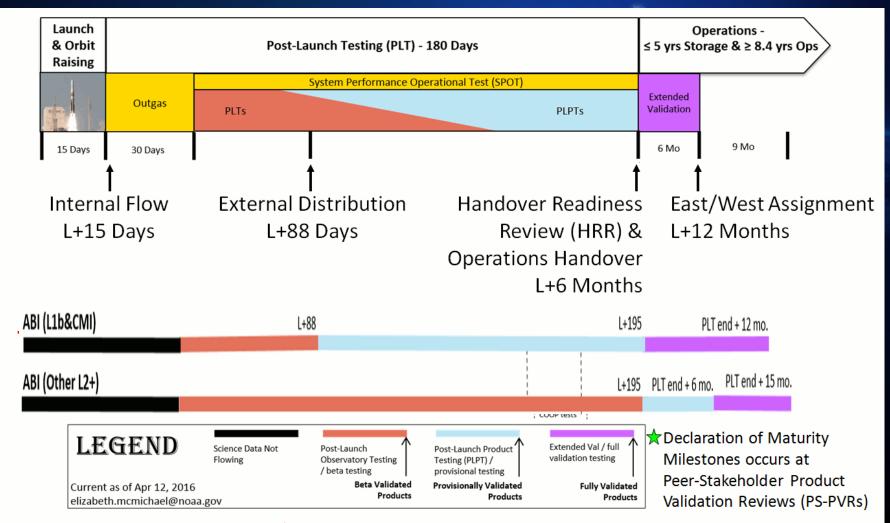
Full Disk:HourlyCONUS:15 minutesMeso:5 minutes

There is an approved ABI scan mode 6 which will provide 10-min FD scans. Implementation some time after checkout period.

ABI Visible/Near-IR Bands

	Future GOES imager (ABI) band	Wavelength range (µm)	Central wavelength (µm)	Nominal subsatellite IGFOV (km)	Sample use
	Ι	0.45–0.49	0.47	I	Daytime aerosol over land, coastal water mapping
>	2	0.59–0.69	0.64	0.5	Daytime clouds fog, inso- lation, winds
	3	0.846–0.885	0.865	I	Daytime vegetation/burn scar and aerosol over water, winds
	4	1.371-1.386	1.378	2	Daytime cirrus cloud
	5	1.58–1.64	1.61	I	Daytime cloud-top phase and particle size, snow
	6	2.225–2.275	2.25	2	Daytime land/cloud properties, particle size, vegetation, snow

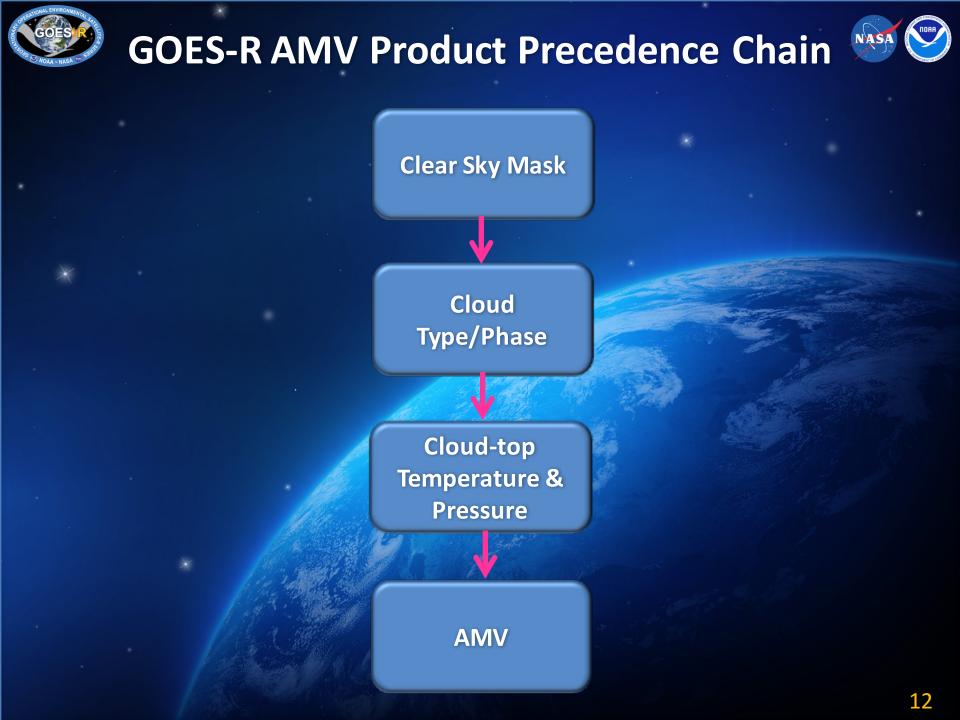
Schmit, T. J., M. M. Gunshor, W. P. Menzel, J. J. Gurka, J. Li, and A. S. Bachmeier, 2005: Introducing the next-generation Advanced Baseline Imager on GOES-R. Bull. Amer. Meteor. Soc., **86**, 1079-1096.

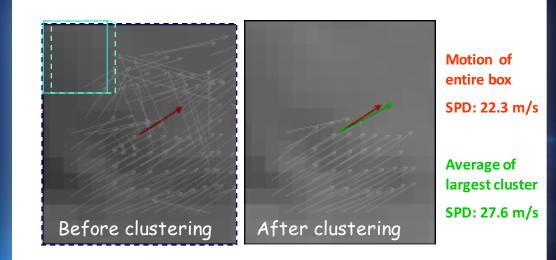


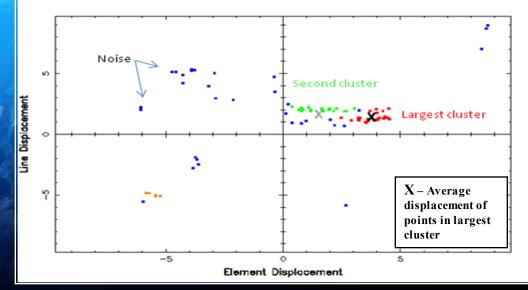
ABI IR Bands

Future GOES imager (ABI) band	Wavelength range (µm)	Central wavelength (µm)	Nominal subsatellite IGFOV (km)	Sample use
7	3.80-4.00	3.90	2	Surface and cloud, fog at night, fire, winds
8	5.77–6.6	6.19	2	High-level atmospheric water vapor, winds, rainfall
9	6.75–7.15	6.95	2	Midlevel atmospheric water vapor, winds, rainfall
10	7.24–7.44	7.34	2	Lower-level water vapor, winds, and SO ₂
П	8.3–8.7	8.5	2	Total water for stability, cloud phase, dust, SO ₂ rainfall
12	9.42–9.8	9.61	2	Total ozone, turbulence, and winds
13	10.1-10.6	10.35	2	Surface and cloud
14	10.8–11.6	11.2	2	lmagery, SST, clouds, rainfall
15	11.8–12.8	12.3	2	Total water, ash, and SST
16	13.0–13.6	13.3	2	Air temperature, cloud heights and amounts

Data Release Strategy


* Two one-day data blackout during this period due to COOP tests.

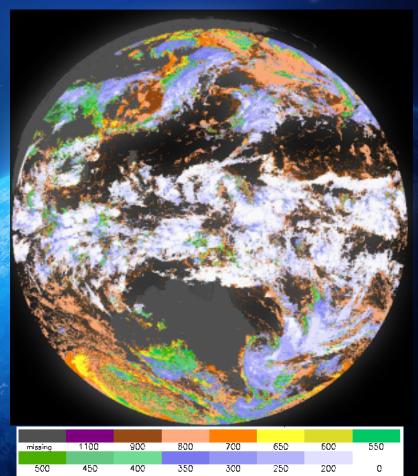

- Latest on GOES-R
- Review of the GOES-R Winds Algorithm
- Examples and Lessons Learned Using Available ABI Proxy Data
- Summary



- Computes local motions (nested) within a larger target scene, together with a clustering algorithm, to extract motion solution(s)
- Perform cluster analysis of line and element displacements
- Cloud heights at pixels belonging to the largest cluster are used to assign a representative height (Median) to the derived motion wind
- Potential for determination of motion at different levels and/or different scales

Bresky, W., J. Daniels, A. Bailey, and S. Wanzong, 2012: New Methods Towards Minimizing the Slow Speed Bias Associated With Atmospheric Motion Vectors (AMVs). J. Appl. Meteor. Climatol., 51, 2137-2151

Cloud Top Pressure Product


Cloud Height Algorithm Highlights

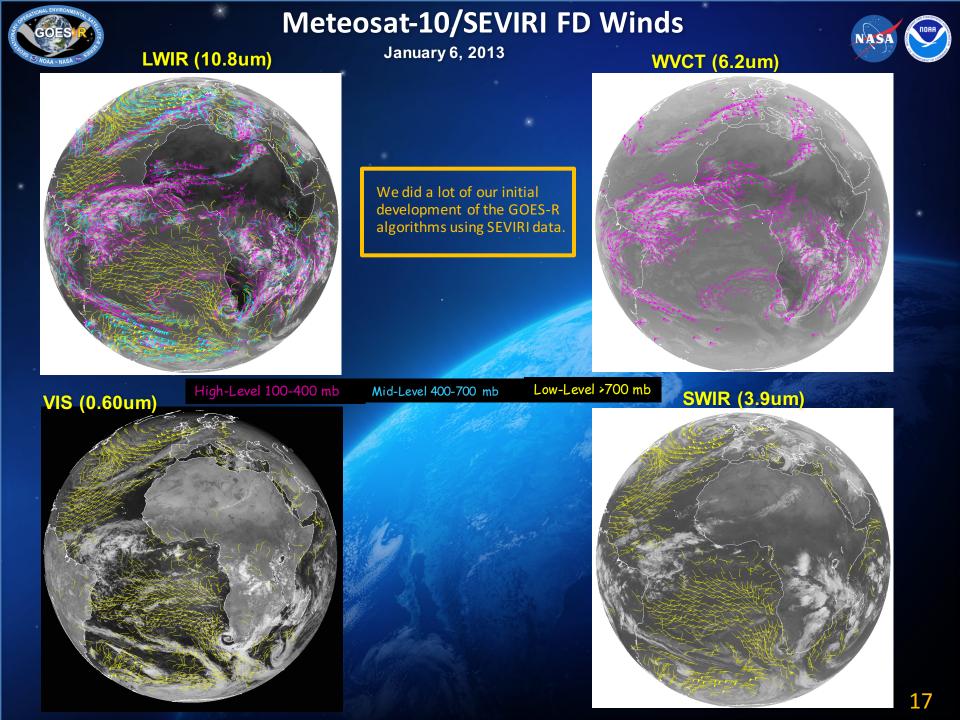
- Algorithm uses the 11, 12 and 13.3mm channels to retrieve cloud-top temperature. Cloud emissivity and a cloud microphysics are retrieved as well.
- Algorithm uses an optimal estimation approach (Rogers, 1976) that provides error estimates (Tc).
- NWP forecast temperature profiles used to compute cloud-top pressure and height.
- For pixels typed as containing multi-layer clouds, a multi-layer solution is performed.
- Special processing occurs in the presence of low level temperature inversions.

References

- Heidinger, A., 2010: GOES-R Advanced Baseline Imager (ABI) Algorithm Theoretical Basis Document For Cloud Mask, GOES-R Program Office, www.goes-r.gov.
- Rodgers, C.D., 1976: Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation. Rev. Geophys. Space Phys., 60, 609-624.

H-8/AHI Cloud-top Pressure (hPa)

Steve Wanzong will talk more about the GOES-R cloud height algorithm tomorrow


- Latest on GOES-R
- Review of the GOES-R Winds Algorithm
- Examples and Lessons Learned Using Available ABI Proxy Data
- Summary

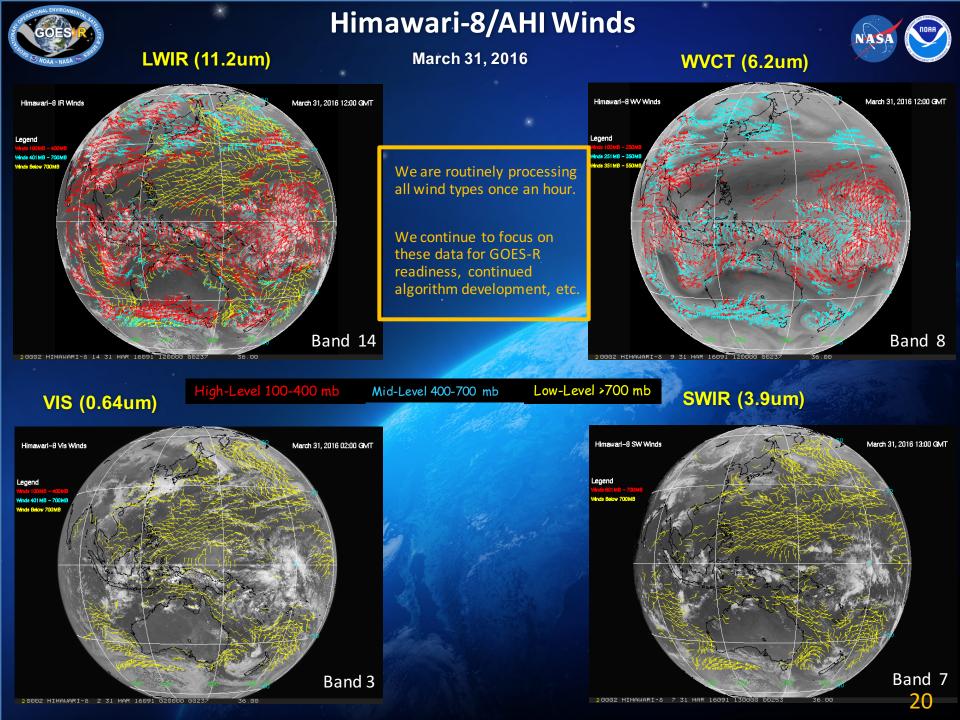
Proxy Data Applied to the GOES-R Algorithms

Satellite/Sensor	Notes	
Meteosat-8/9/10 - SEVIRI	Most of our development work done with these sensors	
GOES-13/15	Operational target date: Spring 2017	
GOES-14	Super Rapid Scans for GOES-R Readiness	
Himawari-8/AHI	Ideal ABI proxy data source; recent work focused on these data	
NOAA-15/18/19 – AVHRR	Operational target date: June 2017	
METOP-A/B - AVHRR	Operational target date: June 2017	
Terra/Aqua-MODIS	Operational target date: June 2017	
Suomi NPP/VIIRS	Operational (May 2014)	

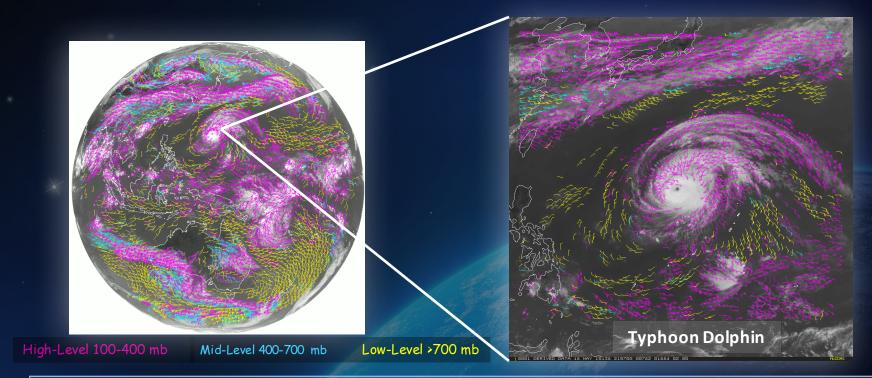
Leveraging Himawari-8/AHI for GOES-R Readiness

- Himawari-8 was successfully launched October 7, 2014 and carries the AHI which is an almost identical instrument to the ABI
- Availability of AHI datasets brings an unprecedented opportunity to exercise the Level-2 algorithm developed for GOES-R
- NESDIS/STAR is routinely pulling AHI data from JMA's Cloud Service
- GOES-R Algorithm Working Group (AWG) teams are working to test their product algorithms with AHI data
- Special thanks to JMA for sharing data and collaborating with NOAA and NASA during their post launch checkout

Himawari-8 began operation at 02:00 UTC on 7th July 2015.



Comparison of Spectral Bands


Approx.		GOES-R	Himawari	GK-2	MTG	FY-4
Central	Band	ABI	AHI	AMI	FCI	AGRI
Wavelength (µm)	Explanation		Central Wave	ength (μm) [Band Number]		
0.47		0.47 [1]	0.47 [1]	0.46 [1]	0.44 [1]	0.47 [1]
0.51	Visible/reflective	None	0.51 [2]	0.51 [2]	0.51 [2]	None
0.64		0.64 [2]	0.64 [3]	0.64 [3]	0.64 [3]	0.65 [2]
0.865	Deflective	0.865 [3]	0.86 [4]	0.86 [4]	0.865 [4]	0.825 [3]
0.91	Reflective	None	None	None	0.914 [5]	None
1.378	Cirrus	1.378 [4]	None	1.38 [5]	1.38 [6]	1.375 [4]
1.61	Snow/Ice	1.61 [5]	1.61 [5]	1.61 [6]	1.61 [7]	1.61 [5]
2.25	Particle size	2.25 [6]	2.25 [6]	None	2.25 [8]	2.25 [6]
3.90	Shortwave IR	3.90 [7]	3.9 [7]	3.85 [7]	3.8 [9]	3.75 ² [7,8]
6.19		6.19 [8]	6.2 [8]	6.24 [8]	6.3 [10]	6.25 [9]
6.95	Water vapor	6.95 [9]	6.9 [9]	6.95 [9]	None	7.1 [10]
7.34		7.34 [10]	7.3 [10]	7.35 [10]	7.35 [11]	None
8.5	Water vapor, SO ₂	8.5 [11]	8.6 [11]	8.6 [11]	8.7 [12]	8.5 [11]
9.61	Ozone	9.61 [12]	9.6 [12]	9.63 [12]	9.66 [13]	None
10.35		10.4 [13]	10.4 [13]	10.43 [13]	10.5 [14]	10.7 [12]
11.2	Longwave IR	11.2 [14]	11.2 [14]	11.2 [14]	None	None
12.3		12.3 [15]	12.3 [15]	12.3 [15]	12.3 [15]	12.0 [13]
13.3		13.3 [16]	13.3 [16]	13.3 [16]	13.3 [16]	13.5 [14]

True-color component bands are highlighted in red, green, and blue.

Himawari-8 AHI as a Proxy for the GOES-R ABI – Derived Motion Winds

- AHI data is the ideal ABI proxy data to perform pre-launch L2 algorithm testing and to assess L2 algorithm performance
- The AWG winds team began near real-time processing of H-8 AMVs on 8/12/2015 along with routine collocations with radiosonde observations. Work is ongoing to initiate routine collocations with aircraft wind observations .
- Exercised steps to read in L1b data for algorithm execution
- Exercised DMW validation tools
 - Visualization of DMW product over imagery
 - Collocation of DMW vs reference/ground truth wind observations (radiosondes, aircraft)
 - Computation of comparison statistics

Himawari-8/AHI Winds

Super Typhoon Soudelor

Nice example of the complimentary coverage provided by the visible (generated using full res 0.5km imagery) and the WV cloud top winds.

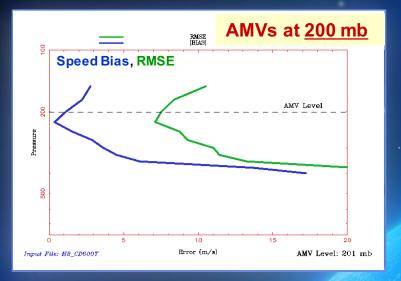
Lessons Learned

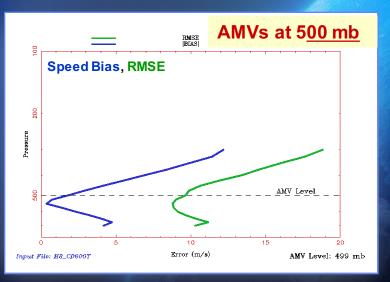
- Significantly more data to process with H-8/AHI
- Significant increase in AMV counts over AMV counts generated from current GOES/N/O/P series

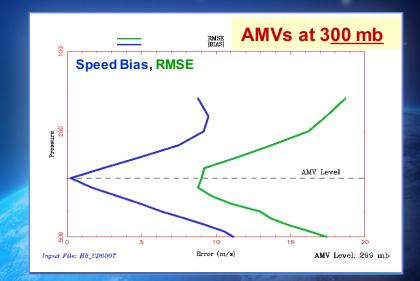
Wind Type	Approx. Number of Good Winds over FD	Acceptable Vertical Coverage (hPa)
Visible (Band 3; 0.64um)	100,000*	Below 700
SWIR (Band 7; 3.9um)	20,000	Below 700
WV Cloud-top (Band8; 6.2um)	30,000	Above 350
WV Clr-sky (Band 8; 6.2um)	5,000	100 -1000
WV Clr-sky (Band 9; 7.0um)	5,000	100 -1000
Wv Clr-sky (Band 10; 7.3 um)	1,000	450-700
LWIR (Band 14; 11um)	50,000	100-1000

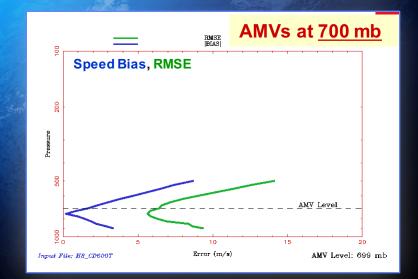
* 10⁶ targets!

Himawari-8 Winds vs Radiosondes


All Levels	12/22/15 – 1/4/16	10/29/15 – 1/4/16	8/13/15 – 1/4/16	8/13/15 – 1/4/16
(100-1000 hPa)	LWIR	WVCT	VIS	SWIR
MVD (<i>m</i> /s)	5.71	5.57	3.21	3.22
St. Deviation (m/s)	4.76	4.43	2.16	2.21
Speed bias (m/s)	-0.97	-0.09	0.05	-0.19
Speed (m/s)	19.28	23.66	8.88	8.99
Sample	24004	169943	16420	34719
High Level	LWIR	wvст		
(100-400 hPa)	Link			
MVD (<i>m</i> /s)	6.16	5.57		
St. Deviation (m/s)	4.96	4.43		
Speed bias (m/s)	-0.65	-0.09		
Speed (m/s)	24.31	23.66		
Sample	11637	169943		
Mid Level	LWIR			
(400-700 hPa)				
MVD (<i>m</i> /s)	7.39			
Precision (m/s)	5.48			
Speed bias (<i>m/s</i>)	-1.93			
Speed (m/s)	20.28			
Sample	5689			
Low Level	LWIR		VIS	SWIR
(700-1000 hPa)			V15	SWIR
MVD (m/s)	3.51		3.21	3.22
St. Deviation (m/s)	2.28		2.16	2.21
Speed bias <i>(m/s)</i>	-0.72		0.05	-0.19
Speed (m/s)	9.66		8.88	8.99
Sample	6678		16420	34719


24

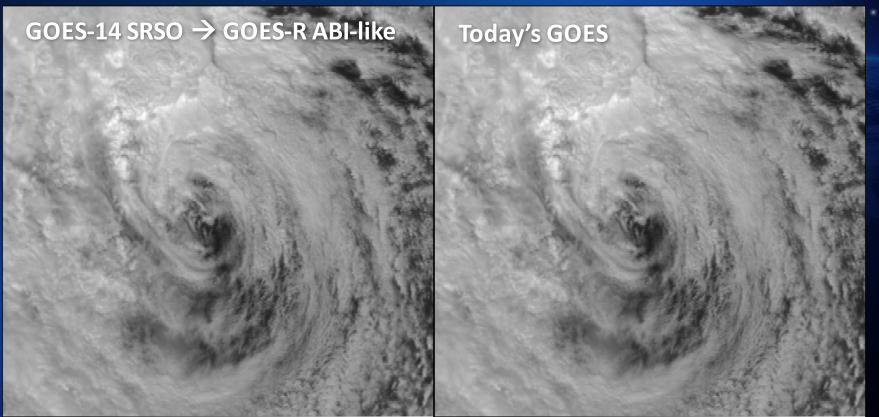

COLORISE ENTROLING INTERNAL STREET


AMV Height Assignment Level-of-Best-Fit vs Radiosondes

Himawari-8/AHI (11.2um) AMVs (09 February 2016 – 15 June 2016)

Status and Lessons Learned Using ABI proxy Data

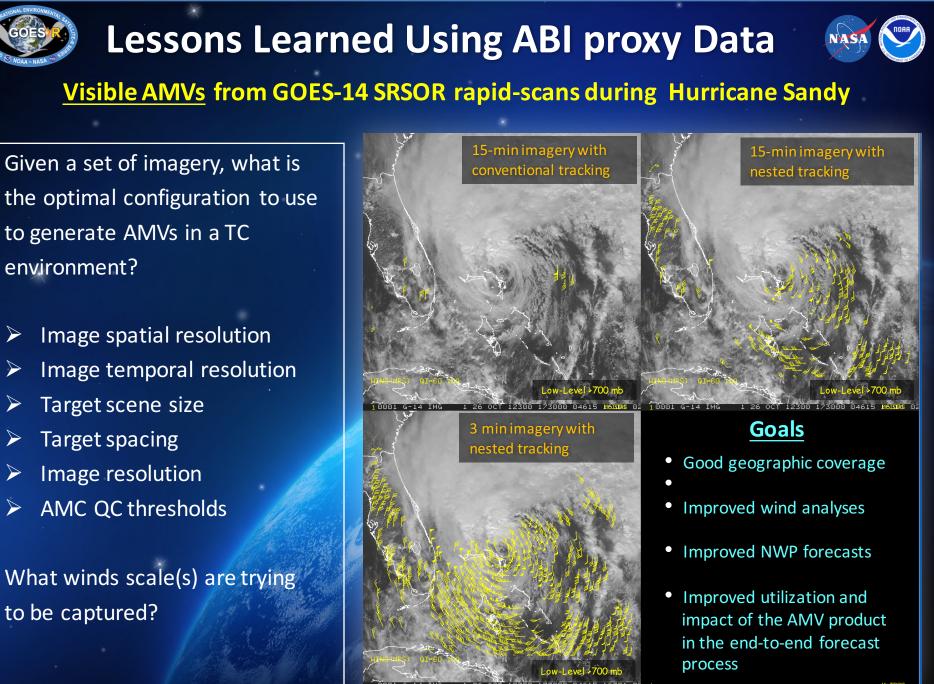
- Recently, we have focused on and have done a lot of GOES-R algorithm testing with
 - GOES-14 SRSOR imagery
 - Himawari-8 AHI Imagery
- Focus areas:
 - Heights assigned to the winds
 - Optimizing the geographic coverage of the winds product
 - Use of the full resolution (0.5km) 0.64um visible channel
 - Optimizing the use of temporal imagery
 - Optimizing the target scene size and spacing
 - Quality control

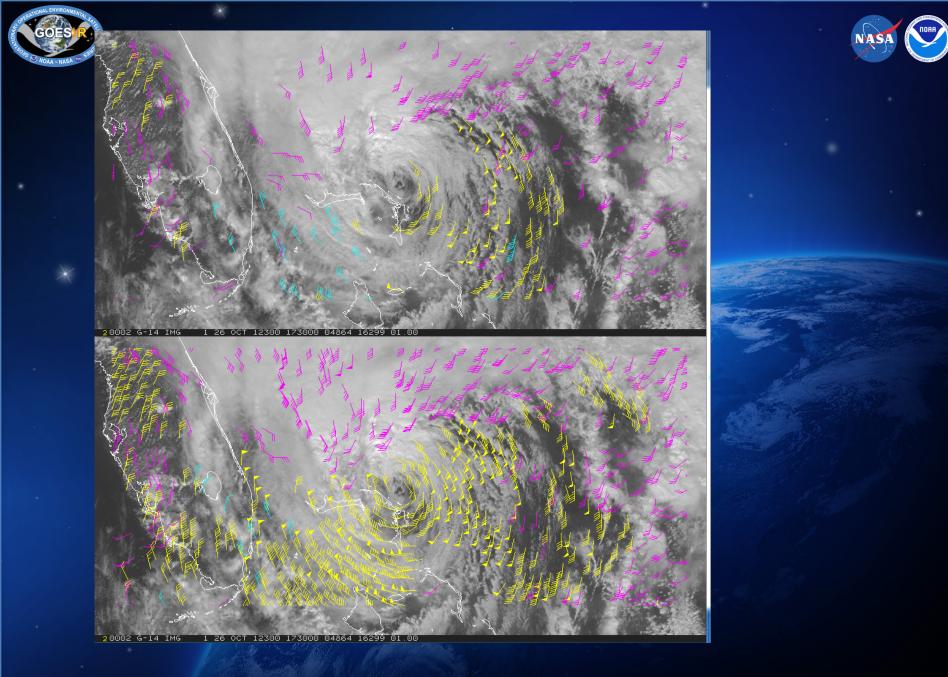


Hurricane Sandy from GOES-14 at Two Temporal Resolutions

$\Delta t = 1 \text{ minute}$

∆t = 30 minutes




GOES-14 in super rapid scan mode collecting images every minute

Hurricane force winds (> 75 mph)

20002 G-14 IMG 1 28 OCT 12302 160500 04117 16962 01.00

Hurricane Sandy

100-500 hPa

500-950 hPa

26 OCT 12

18:00 UTC

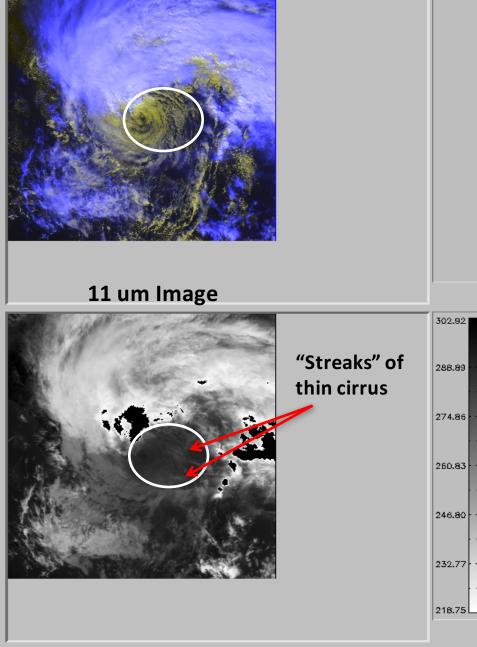
Lessons Learned Using ABI proxy Data

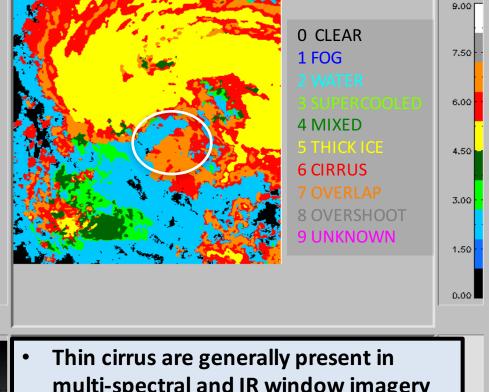
Visible AMVs from GOES-14 SRSOR rapid-scans during Hurricane Sandy

Large gaps in the low level visible winds coverage. Winds were flagged by QC check which verifies if derived winds fall within expected pressure range.

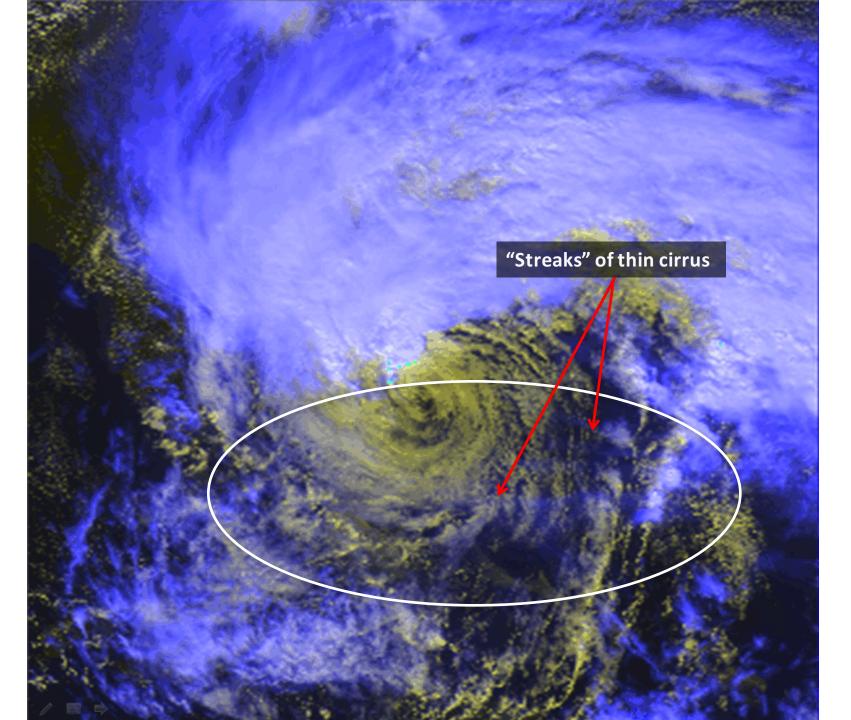
We discovered that retrieved cloudtop pressures in this area were in the <u>200-400mb</u> range.

However, we knew we were tracking low level clouds.


31

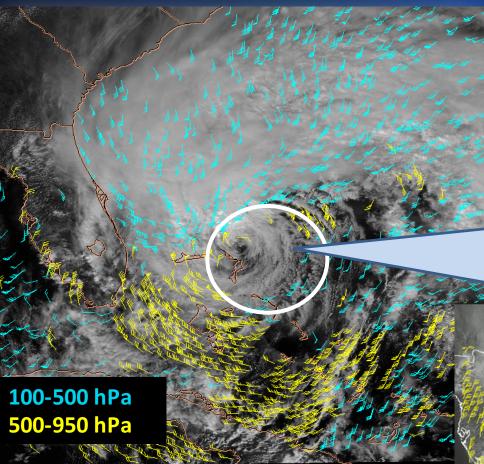

Show Full Area

0.65, 0.65, 11 um RGB)


X iView V0.1

Cloud Type

- Thin cirrus are generally present in multi-spectral and IR window imagery where the cloud type indicates overlapping cirrus and cirrus (orange and red in cloud type image).
- The thin cirrus that overlap the lower level clouds cannot be identified in visible imagery alone (IR channels are needed)



Lessons Learned Using ABI proxy Data

Visible AMVs from GOES-14 SRSOR rapid-scans during Hurricane Sandy

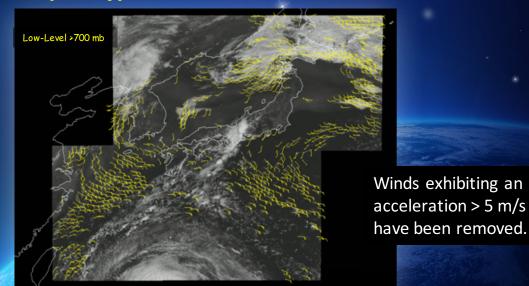
OCT 12 1

18:00 UTC UW

To resolve this problem, we developed and tested a AMV algorithm update that takes advantage of:

- OVERLAP cloud type designation
- Estimated cloud emissivity
- Opaque cloud height estimate provided by the cloud height algorithm.

3 min imagery with nested tracking


Lessons Learned Using ABI proxy Data

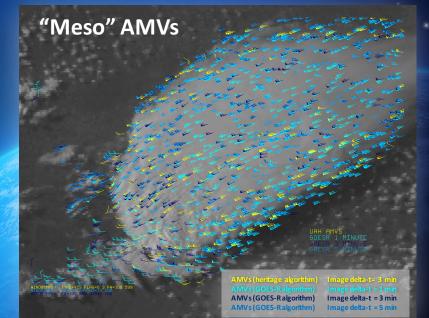
Visible winds derived from Himawar-8/AHI 2.5 min, 0.5km visible imagery in the vicinity of Super Typhoon Soudelor.

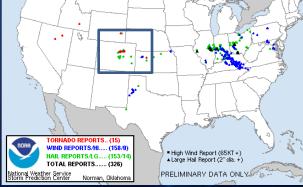
Given a set of imagery, what is the optimal configuration to use to generate AMVs in a TC environment?

- Image spatial resolution
- Image temporal resolution
- Target scene size
- Target spacing
- Image resolution
- AMC QC thresholds

What winds scale(s) are trying to be captured?

Low-Level >700 mb


Winds exhibiting an acceleration > 7.5 m/s have been removed.



Lessons Learned Using ABI proxy Data

GOES-14 SRSO provided *one minute mesoscale imagery* and offered a glimpse into the possibilities that will be provided by the ABI on GOES-R in one minute mesoscale imagery

DIA Tornadic Storm: 5/21/14

Dave Stettner will discuss this case and "meso" AMVs more in his talk on Wednesday

Another Lesson Learned Using Externally Generated Cloud Products

IWWG

- Cloud product retrievals at cloud edges can be challenging
- Can be problematic for AMV height assignments
- We've updated our GOES-R AMV algorithm to interrogate the cloud phase for pixels in the largest cluster and determine the dominant (ie., mode) cloud phase
 - Use pixels whose phase matches the dominant phase to compute the median CTP
 - This approach minimizes, but does not totally eliminate this problem

H-8/AHI Retrieved Cloud Top Pressure

ICWG

- Cloud Information (beyond CTP/CTT)
 - Cloud Optical Depth, Cloud type/phase
 - Estimates of retrieval error (CTP, CTT, OE Cost)

 What is the value of this information in terms of Quality Control ?

Himawari-8 LWIR (11.2um) Winds vs. Radiosondes 2/9/2016 – 6/21/2016 (60 <QI < 100)

All Levels	Estimate of Cloud Top Pressure Error				
(100-1000 hPa)	0 – 50mb	50 – 100mb	100 – 200mb	> 200mb	
MVD (m/s)	5.62	6.51	8.78	7.91	
St. Deviation (m/s)	4.31	5.08	6.70	6.74	
Speed bias (m/s)	-1.18	0.18	1.77	-2.23	
Speed (m/s)	19.95	21.28	25.21	15.59	
Sample	291251	119936	55262	3565	
High Level (100-400 hPa)					
MVD (m/s)	6.06	6.54	8.78	14.40	
St. Deviation (m/s)	4.46	5.05	6.43	8.13	
Speed bias (m/s)	-1.31	0.49	2.19	0.09	
Speed (m/s)	24.63	22.41	28.53	42.88	
Sample	180355	101809	35240	217	
Mid Level					
(400-700 hPa)					
MVD (m/s)	5.78	7.12	9.17	8.29	
St. Deviation (m/s)	4.69	5.66	7.28	6.87	
Speed bias (m/s)	-1.77	-2.03	1.21	-2.63	
Speed (m/s)	15.62	17.24	20.36	15.38	
Sample	57248	13232	18402	2624	
Low Level					
(700-1000 hPa)					
MVD (m/s)	3.96	4.26	4.23	4.56	
St. Deviation (m/s)	2.73	3.03	2.80	2.98	
Speed bias (m/s)	-0.13	-0.34	-0.94	-1.45	
Speed (m/s)	8.88	8.76	8.15	8.19	
Sample	53646	4895	1620	724 39	

Himawari-8 LWIR Winds vs Radiosonde

(2/9/2016 - 6/21/2016; 60 < QI < 100)

All Levels	Estimate of Cloud Top Temperature Error				
(100-1000 hPa)	0 – 5K	5 – 10K	10 – 20K	> 20K	
MVD (m/s)	5.60	6.11	7.32	8.49	
St. Deviation (m/s)	4.34	4.70	5.83	6.21	
Speed bias (m/s)	-1.33	-1.05	1.11	1.74	
Speed (m/s)	19.09	22.22	22.98	29.16	
Sample	236062	85530	146366	201	
High Level (100-400 hPa)					
MVD (m/s)	6.30	6.00	7.02	8.63	
St. Deviation (m/s)	4.58	4.58	5.49	6.23	
Speed bias (m/s)	-1.69	-0.77	1.12	1.76	
Speed (m/s)	25.88	23.42	23.46	29.34	
Sample	120416	70336	125027	196	
Mid Level					
(400-700 hPa)					
MVD (m/s)	5.82	6.69	9.14	3.04	
St. Deviation (m/s)	4.73	5.23	7.31	1.00	
Speed bias (m/s)	-1.84	-2.29	1.14	0.97	
Speed (m/s)	15.45	16.95	20.28	22.18	
Sample	55788	14651	21092	5	
Low Level					
(700-1000 hPa)					
MVD (m/s)	3.97	5.93	6.44	NA	
St. Deviation (m/s)	2.74	3.46	3.67	NA	
Speed bias (m/s)	-0.13	-4.00	-4.84	NA	
Speed (m/s)	8.84	9.36	8.10	NA 40	
Sample	59856	543	247	NA 40	

Himawari-8 LWIR Winds vs Radiosonde

(2/9/2016 - 6/21/2016; 60 < QI < 100)

All Levels	Cloud Optical Depth				
(100-1000 hPa)	0-1.0	1.0 - 10	10 - 20		
MVD (m/s)	7.37	5.65	7.67		
St. Deviation (m/s)	5.81	4.39	5.87		
Speed bias (m/s)	0.70	-1.09	-2.73		
Speed (m/s)	22.68	20.04	20.18		
Sample	152549	306134	4121		
High Level (100-400 hPa)					
MVD (m/s)	7.14	6.12	6.41		
St. Deviation (m/s)	5.54	4.54	4.30		
Speed bias (m/s)	0.87	-1.19	-1.27		
Speed (m/s)	23.64	25.04	24.02		
Sample	124314	184580	2021		
Mid Level (400-700 hPa)					
MVD (m/s)	8.40	5.91	9.42		
St. Deviation (m/s)	6.86	4.80	7.14		
Speed bias (m/s)	0.02	-1.70	-4.87		
Speed (m/s)	18.63	15.94	17.67		
Sample	27796	61613	1764		
Low Level (700-1000 hPa)					
MVD (m/s)	6.09	3.97	6.08		
St. Deviation (m/s)	3.53	2.74	3.87		
Speed bias (m/s)	-4.27	-0.15	-0.34		
Speed (m/s)	8.34	8.84	10.27		
Sample	439	59939	336 41		

Himawari-8 LWIR Winds vs Radiosonde

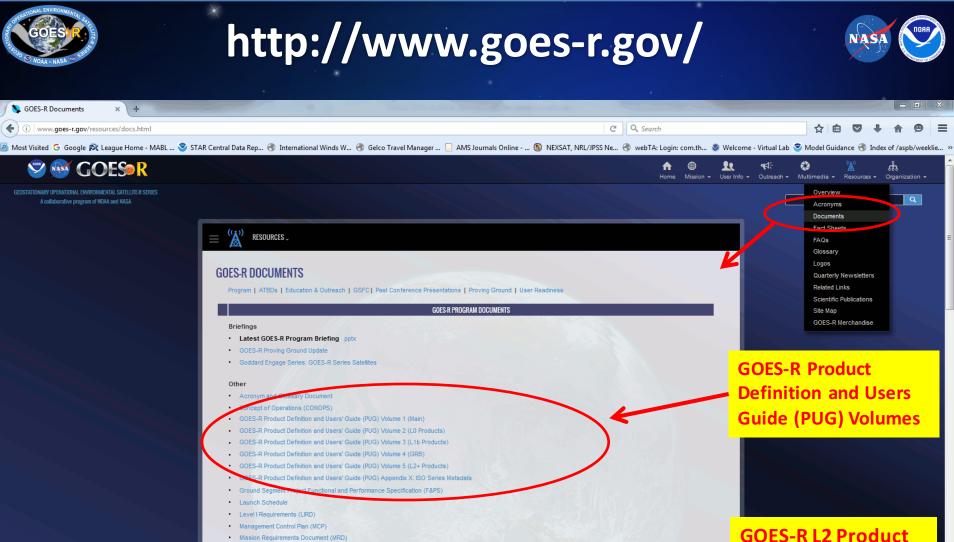
(2/9/2016 - 6/21/2016; 60 < QI < 100)

All Levels	OE Cost			
(100-1000 hPa)	0-1	1 – 5	5 - 18	
MVD (m/s)	6.10	9.12	10.08	
St. Deviation (m/s)	4.77	6.71	6.94	
Speed bias (m/s)	-0.13	1.61	4.60	
Speed (m/s)	21.02	22.52	20.43	
Sample	278072	3859	234	
High Level (100-400 hPa)				
MVD (m/s)	6.31	8.65	8.63	
St. Deviation (m/s)	4.78	6.24	5.83	
Speed bias (m/s)	-0.14	0.76	2.44	
Speed (m/s)	23.38	22.66	18.94	
Sample	215814	3163	155	
Mid Level (400-700 hPa)				
MVD (m/s)	6.04	11.85	15.02	
St. Deviation (m/s)	5.24	8.30	8.07	
Speed bias (m/s)	-0.27	6.05	10.46	
Speed (m/s)	14.94	23.25	27.72	
Sample	41873	631	59	
Low Level (700-1000 hPa)				
	4.01	5.21	(7)	
MVD (m/s) St. Deviation (m/s)	4.01 2.83	5.31 3.22	6.76 3.00	
Speed bias (m/s)	0.26	-0.13	4.15	
Speed (m/s)	8.60	-0.13 8.58	10.40	
Sample	20385	65	20 42	

- Latest on GOES-R
- Review of the GOES-R Winds Algorithm
- Examples and Lessons Learned Using Available ABI Proxy Data
- Summary

- GOES-R Launch Date: No earlier than 4 November 2016
- GOES-R winds algorithm has been run and tested on numerous ABI proxy datasets.
- Focused recent testing and analysis on GOES-14 super rapid scan and Himawari-8/AHI to optimize AMV algorithm configurations and quality control
- We are still learning the value of cloud information associated with AMV target scenes. Active topic for collaboration between the IWWG and ICWG.

Jaime Daniels: jaime.daniels@noaa.gov


BACKUP SLIDES

Nested Tracking & Clustering Details

- Size of outer target scene is 19x19 pixels
 - 2-pixel offset is used that yields a maximum of 225 possible local motion estimates derived from nested 5x5 target scenes
- An initial sample of local motion vectors is filtered by imposing a 0.8 correlation threshold
- Clustering (via DBSCAN)
 - Specification of two parameters to start
 - Minimum number of points in a cluster (4)
 - Radius about each point to search for neighboring points (1/2 pixel)
 - Each point (ie., displacement) is processed and given a classification based on nearby points
 - <u>"Core" cluster point:</u> Has at least 4 points in neighborhood (radius)
 - <u>"Boundary" point:</u> Has fewer than 4 neighbors, but connected to neighborhood by at least one other point
 - <u>"Noise":</u> Point does not belong to any cluster

Potential Socio-Economic Benefits of GOES-R

Risk Management Plan (RMP)

GOES-R PRODUCT ALGORITHM THEORETICAL BASIS DOCUMENTS (ATBDS)

ABI Absorbed Shortwave Radiation (Surface)

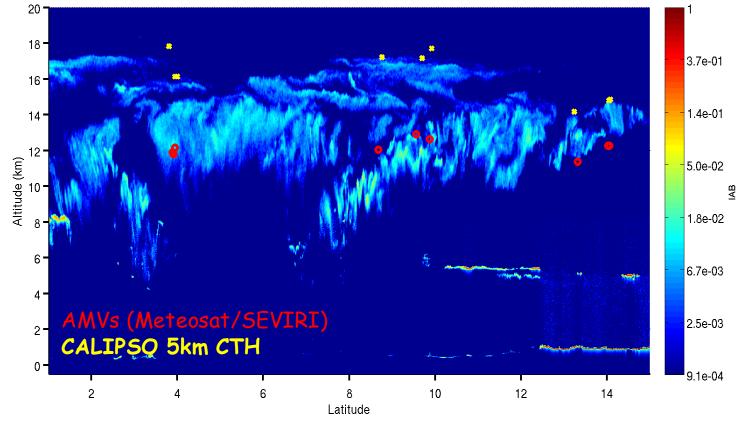
ABI Aerosol Detection Product

ABI Sevended Matter/Aerosol Optical Depth and Aerosol Size Parameter
 ABI Cloud Height

ABI Cloud Mask

▲ 🛱 🛱 🕪 3:13 PM 6/14/2016 4AX

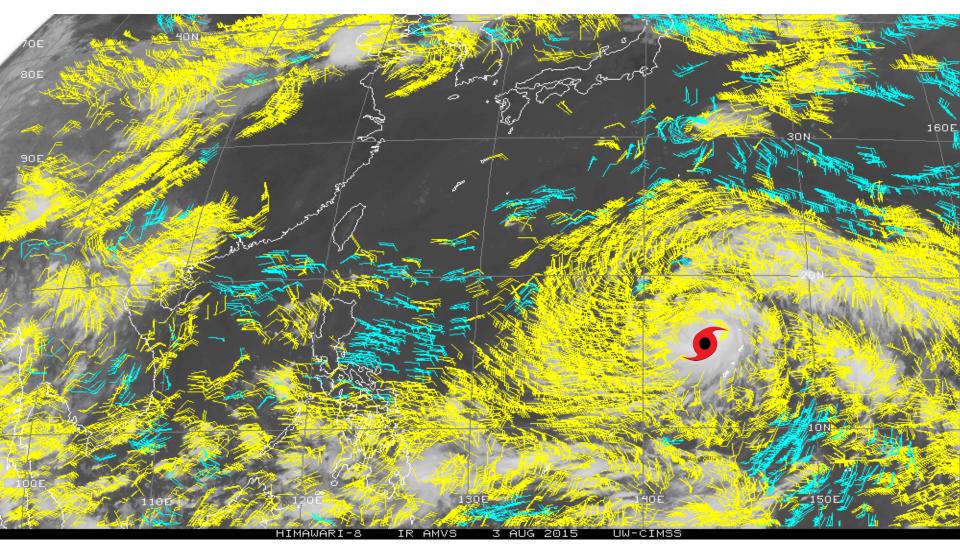
Algorithm


Theoretical Basis

Documents (ATBD)

www.goes-r.gov/resources/docs.html

Example Deep Dive Validation: CALIPSO Cloud-Top Heights vs. DMW Height Assignments



Instruments "see" different things, but comparisons are still useful

Cooperative Institute for Meteorological Satellite Studies CIMSS University of Wisconsin - Madison

Himawari-8 AHI Data and Assimilation for Typhoon Soudelor (2015)

GOES-R AWG algorithm Atmospheric Motion Vectors -- 100-500hPa (yellow) 500-950hPa (bine)