Atmospheric Motion Vectors from INSAT-3D: ISRO Status

Sanjib K Deb, D K Sankhala, C M Kishtawal

Atmospheric and Oceanic Sciences Group
Space Applications Centre
Indian Space Research Organization
Ahmedabad-380015, India
E-mail: sanjib_deb@sac.isro.gov.in
Contents:

2. INSAT-3D AMV retrieval algorithm.

3. Present accuracy status.

4. Recent changes in QI parameters.

5. NWP applications.

6. Derived products from INSAT-3D AMVs

7. Algorithm development for synergistic use of 3D and 3DR data in staggering mode.

10. Concluding remarks and future scopes
ISRO Current satellites for Earth Observations

YEAR... 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

GEO

KALPANA-1 (VHRR)
INSAT-3A (VHRR, CCD)
INSAT-3D (IMAGER & SOUNDER)
INSAT-3DR (IMAGER & SOUNDER)
INSAT-3DS (IMAGER & SOUNDER)
GISAT (MX-VNIR, HyS-VNIR, HyS-SWIR, MX-LWIR)

Atmosphere & Ocean

Oceansat-2 (OCM, SCAT, ROSA)
CNES-ISRO MT (MADRAS SAPHIR, ScaRaB, ROSA)
CNES-ISRO SARAL (ALTIKA, ARGOS)
NEMO-AM (MADPI)
SCATSAT-1 (Scatterometer)
Oceansat-3 (OCM, LWIR, SCAT)

NASA-ISRO NISAR

Land & Water

Resourcesat-2 (LISS-3/4, AWiFS)
RISAT-1 (C-SAR)
Resourcesat-2A (LISS-3/4, AWiFS)

Cartographic

CARTOSAT-1 (Stereo PAN)
CARTOSAT-2 (PAN)
CARTOSAT-2E (PAN)
CARTOSAT-3 (PAN)
FUTURE GEO SATELLITES: INSAT - 3DR/3DS

6 Channel IMAGER
- Spectral Bands (µm)
 - Visible: 0.55 - 0.75
 - Short Wave Infra Red: 1.55 - 1.70
 - Mid Wave Infra Red: 3.70 - 3.95
 - Water Vapour: 6.50 - 7.10
 - Thermal Infra Red – 1: 10.30 - 11.30
 - Thermal Infra Red – 2: 11.30 - 12.50
- Resolution: 1 km for Vis & SWIR
 - 4 km for MIR & TIR
 - 8 km for WV

19 Channel SOUNDER
- Spectral Bands (µm)
 - Short Wave Infra Red: Six bands
 - Mid Wave Infra Red: Five Bands
 - Long Wave Infra Red: Seven Bands
 - Visible: One Band
- Resolution (km): 10 X 10 for all bands
- No of simultaneous: 4 sounding per band

LAUNCH: 2016/2022
FUTURE GEO SATELLITES: (GISAT)

Launch Schedule: 2017, Geostationary orbit, 83E

GISAT Scan scenario
Scan area for two scan scenario (5° & 10°)

<table>
<thead>
<tr>
<th>Band</th>
<th>Ch</th>
<th>SNR/NEdT</th>
<th>IFOV (m)</th>
<th>Range (µm)</th>
<th>Channels (µm)</th>
</tr>
</thead>
</table>
| MX-VNIR | 4 | > 200 | 50 | 0.45 - 0.875 | B1: 0.45-0.52
| | | | | | B2: 0.52-0.59
| | | | | | B3: 0.62-0.68
| | | | | | B4: 0.77-0.86
| | | | | | B5N: 0.71-0.74
| | | | | | B6N: 0.845-0.875 |
| HyS-VNIR | 60 | > 400 | 500 | 0.375 - 1.0 | Δλ < 10 nm |
| HyS-SWIR | 150| > 400 | 500 | 0.9 - 2.5 | Δλ < 10 nm |
| MX-LWIR | 6 | NEdT < 0.15K | 1500 | 7.0 – 13.5 | CH1: 7.1-7.6
| | | | | | CH2: 8.3-8.7
| | | | | | CH3: 9.4-9.8
| | | | | | CH4: 10.3-11.3
| | | | | | CH5: 11.5-12.5
| | | | | | CH6: 13.0-13.5 |
Geostationary Satellite Observations
Level 1B data IR/WV/VIS/MIR Channels

Target Selection – Local Anomaly Method
(Deb et. al 2008, Kishtawal et. al 2009)

Target Tracking - Nash Sutcliffe Coefficient
(Deb et. al 2008)

BUFFER GENERATION + QUALITY CONTROL
(Deb et al 2013, Holmlund 1998)

Tracer Height Assignment

IR WINDOW Technique

H₂O Intercept (Neiman et. al 1993)

CLOUD BASE method (Marshall et. al. 1997)

FINAL OUTPUT

\[E = 1 - \frac{1}{n} \sum_{i=1}^{n} \left(\frac{I_t - I_s}{I_s} \right)^2 \]
Major Modifications in Wind Retrieval Algorithm w. r. to earlier Kalpana-1 version

1. Use of first guess for search area optimization
2. Height assignment prior to tracking
3. Improved speed bias correction, varying with pressure level.
4. Improved quality check procedure.
5. Improved screening of erroneous winds.
6. Retrieval of AMVs using MIR (3.9 µm) channel during night time.
Height assignment

- Infrared window technique (WIN)/Histogram method (HIST).
- H₂O Intercept Method. (Nieman et al. 1993)
- Few gross error checks. (Olander et al. 2001)

IR winds: - Infrared window technique.
- H₂O Intercept method.
- Cloud Base method.

WV winds: - WV Histogram method.
- H₂O Intercept method.

VIS winds: - Infrared window technique.
- Cloud Base method.
 (Using collocated IR image)

MIR winds: - Infrared window technique.
- Cloud Base method.
 (Using collocated IR image)
QUALITY CONTROL: QUALITY BASED SCREENING
(Holmlund -1998)

$$DCF = 1.0 \tanh\left(\frac{tanh\left(\frac{S}{B_1} \right)}{A_1 \exp\left(\frac{S}{B_1} \right) + C_1} \right)^{D_1}$$
Direction Consistency Function

$$SCF = 1.0 \tanh\left(\frac{S}{\text{MAX}(A_2S, B_2) + C_2} \right)^{D_2}$$
Speed Consistency Function

$$VCF = 1.0 \tanh\left(\frac{V}{\text{MAX}(A_3S, B_3) + C_3} \right)^{D_3}$$
Vector Consistency Function

$$PCF = 1.0 \tanh\left(\frac{V_m}{\text{MAX}(A_4S, B_4) + C_2} \right)^{D_4}$$
Spatial Consistency Function

$$QI = \frac{DCF + SCF + VCF + PCF}{4.0}$$
Use of above Quality Control procedure with little modification
Only 1 set retrieved At a time

Buffer generation for quality control

- Use of sector generated images (20-130E, 60S-60N) with improved registration and fixed lat/lon co-ordinate.
- Take advantage of using multiple 30-min images, rather than traditional 3 images.

...........All the singular retrievals during past N-hours provide support
Vector Selection Criteria

• For every new vector under consideration, (from current image-pair), its vector difference from the buffer is computed as well as in 3 x 3 neighborhood, provided, the vectors are in same levels.

• Each vector difference is weighted according to distance and time difference from the current vector.

• The vector differences is arranged in ascending order, if the mean wind magnitude of first 10-vectors is less is 4 m/s, then the vector under consideration is accepted, otherwise rejected

• The final vector is computed by taking weighted mean of first 10 sorted vectors and current vector.

• The QI of the selected vector is calculated using EUMETSAT QI procedure.

Salient Features of this modification

• Utilizes information buffer from past 4-hours for support.
• No thresholds assumed for land/cloud discrimination, making the algorithms more adaptable and dynamic in nature.
Validation results

1. Validation w. r. to Radiosonde: - July 2014 to May 2016
 - Insat-3D TIR1 and WV AMVs

 a. Temporal comparison

The time series of RMSVD and speed bias of INSAT-3D infrared AMVs for a) High, b) mid and c) Low levels and d) WV AMVs averaged over retrieval domain for from July 2014 to May 2016 two times a day (00 and 12 UTC) when validated with Radiosonde winds.
Validation results

Validation w. r. to Radiosonde:
- July 2014 to May 2016
- Insat-3D TIR1 and WV AMVs

a. Temporal comparison

The time series of RMSVD and speed bias of INSAT-3D infrared AMVs for a) High, b) mid and c) Low levels and d) WV AMVs averaged over retrieval domain for from July 2014 to May 2016 two times a day (00 and 12 UTC) when validated with Radiosonde winds.
2. Validation w. r. to model analysis: - APRIL 2016 - Insat-3D, TIR1 AMVs

a. Spatial variations

Spatial plots of normalized RMSVD (upper) and speed biases (lower) averaged for April 2016 when TIR1 AMVs from INSAT-3D are collocated with NCEP GFS analysis.

Normalized RMSVD

Spatial plots of normalized RMSVD (upper) and speed biases (lower) averaged for April 2016 when TIR1 AMVs from INSAT-3D are collocated with NCEP GFS analysis.
2. Validation w. r. to model analysis: - April 2016
- Insat-3D, WV, VIS, MIR AMVs

a. Spatial variations

Spatial plots of normalized RMSVD (upper) and speed biases (lower) averaged for April 2016 when WV, VIS and MIR AMVs from INSAT-3D are collocated with NCEP GFS analysis.
2. Validation w. r. to model analysis:

- April 2016
- Insat-3D, TIR1, WV, VIS, MIR AMVs

Vertical plots of normalized RMSVD (upper) and speed biases (lower) averaged for April 2016 when TIR1, WV, VIS and MIR AMVs from INSAT-3D are collocated with NCEP GFS analysis.
INSAT-3D AMV VALIDATION w. r. to model analysis

NCMRWF

Infrared AMV: High Level

INSAT-3D IR(10.8), January 2016, High Level, Above 400 hPa

UKMO

Infrared AMV: High Level

INSAT-3d IR, January 2016, Above 400 hPa

Infrared AMV: Low Level

INSAT-3D IR(10.8), January 2016, Low Level, Below 700 hPa

-Thanks to NCMRWF and UKMO
INSAT-3D AMV VALIDATION w.r. to model analysis

NCMRWF

Water Vapor AMV: High Level
INSAT-3D WV, January 2016, High Level, Above 400 hPa

Visible AMV: Low Level
INSAT-3d VIS, January 2016, Low Level, Below 700 hPa

UKMO

Water Vapor AMV: High Level
INSAT-3d WV, January 2016, Above 400 hPa

Visible AMV: Low Level
INSAT-3d VIS, January 2016, Below 700 hPa

-Thanks to NCMRWF and UKMO
b. Temporal variations

The time series of RMSVD and speed bias of INSAT-3D infrared AMVs for High, mid and Low levels, WV AMVs for High VIS and MIR AMVs for Low levels averaged over retrieval domain taking four times a day (00, 06, 12 and 18 UTC) when validated with NCEP GFS analysis.
C. SAC and UKMO validation comparison:

The time series of RMSVD and speed bias of INSAT-3D Infrared AMVs (High, Mid and Low) validated at SAC and UKMO: averaged over retrieval domain for July 2014 to December 2015 taking four times a day (00, 06, 12 and 18 UTC) when validated with model analysis.

-Thanks to UKMO
C. SAC and UKMO validation comparison:

The time series of RMSVD and speed bias of INSAT-3D WV (High), VIS and MIR (Low-levels) AMVs validated at SAC and UKMO: averaged over retrieval domain for July 2014 to December 2015 taking four times a day (00, 06, 12 and 18 UTC) when validated with model analysis.

-Thanks to UKMO
Recent changes in Quality Indicator parameters

DATA Used: INSAT-3D TIR1, WV, VIS and MIR AMVs November 2015

The RMSVD, speed bias and collocations of INSAT-3D TIR1 AMVs (High, Mid and Low levels), WV (High), VIS (Low) and MIR (Low) against different Quality control values for the operational and new modified version averaged over retrieval domain for November 2015 taking two times a day (00 and 12 UTC) when validated with radiosonde winds.
NWP applications

a. Impact on track forecast of cyclonic storm NANAUK - Using WRF model

JTWC observed track along with forecasted track of cyclonic storm NANAUK from the control and different assimilation experiments.

Track forecast errors in km for different forecast lengths from the control and assimilation experiments.

b. Impact of INSAT-3D AMV on WRF Model Prediction for summer monsoon July 2014

Histogram of First Guess and Analysis Departure during July 2014

Impact of INSAT-3D AMVs on Rainfall Forecast
Derived products from INSAT-3D AMVs

28 March 2016 0900 UTC

Upper level divergence

Lower level convergence

Mid-level Wind Shear:
Wind speed difference between mid (400-600 hPa) and lower (700-925 hPa) levels (Shaded).

Wind Shear:
Wind speed difference between upper (100-300 hPa) and lower (700-925 hPa) levels (Shaded).
24 Hr Atmospheric shear tendency

The change in deep-layer wind shear over 24 four hours is plotted with the line contours.

The current upper level shear is shown with the colored background contours.

Meteosat 7

INSAT 3D

15 June 2016 0000 UTC

Relative vorticity

Thanks to CIMSS
Algorithm development for synergistic use of INSAT-3D and INSAT-3DR data in staggering mode

Proto-type algorithm: INSAT-3D TIR1 and KALPANA-1 Infrared images

NOVEMBER 2015

INSAT-3D: AMV at 1200 UTC
0800, 0830, 0900, 0930
1000, 1030, 1100, 1130
1200
4 Km images are resampled to 8 KM

KALPANA-1: AMV at 1215 UTC
0815, 0845, 0915, 0945
1015, 1045, 1115, 1145
1215
Original 8 Km resolution image

In staggering mode: AMV at 1215 UTC
1015, 1030, 1045, 1100
1115, 1130, 1145, 1200
1215
Both K1 and 3D images are in 8 Km

In staggering mode: 1. Before tracer selection and tracking Kalpana-1 images are calibrated using INSAT-3D

2. Height Assignment is done using INSAT-3D images
Offline AMVs retrieved:

- 0000 & 1200 UTC for INSAT-3D (Total 53 Files)
- 0015 & 1215 UTC for Kalpana-1
- 0015 & 1215 UTC for staggering mode

Validation with RS Winds: 0000 & 1200 UTC

Root mean square vector differences (RMSVD)

HIGH: 100 - 400 hPa
MID: 401 - 700 hPa
LOW: 701 - 950 hPa

% improvement in RMSVD

With r. to K1 together: 8.5%
With r. to 3D together: 4.6%
Speed BIAS

- **HIGH:** 100 - 400 hPa
- **MID:** 401 - 700 hPa
- **LOW:** 701 - 950 hPa

Collocations

- **HIGH:** 100 - 400 hPa
- **MID:** 401 - 700 hPa
- **LOW:** 701 - 950 hPa

Normalized Root mean square vector differences (NRMSVD): with mean RS winds

- **HIGH:** 100 - 400 hPa
- **MID:** 401 - 700 hPa
- **LOW:** 701 - 950 hPa
HIGHLIGHTS

• INSAT-3D AMVs are now assimilated in IMD’s global and regional operational models.

• Daily monitoring and assimilation of INSAT-3D AMVs are being started in NCMRWF operational models since September 2014.

• Regular operational monitoring of INSAT-3D AMVs are being started at UKMO from January 2015.

• Algorithm for AMV derived products is operational at IMD Delhi. It will further enhance the monitoring of tropical cyclones over Indian ocean.

• Recently, slight improvement in accuracies is achieved due to fine tuning of quality indicator (QI) parameters in the algorithm.

EUMETSAT/UKMO Requirement

1. Separation of clear sky and cloudy winds in Water Vapour AMVs
2. Retrieval of AMVs using full-disc images.
1. The accuracy of INSAT 3D AMVs are stable for the last two years.

2. As the operational lifespan of either Kalpana-1 or Meteosat 7 is going to end any time soon, the newly derived AMVs from INSAT 3D can be used as suitable substitutes for the presently available AMVs derived using the data from the older satellites.

3. The availability MIR channel in INSAT 3D has also enhanced the quality of night-time low-level AMVs, which is not possible with other available satellites Kalpana 1 or Meteosat 7 over this region.

4. With limited impact studies, it is observed that assimilation of INSAT 3D AMVs has improved the cyclone track forecast for different forecast lengths and also have some positive impact for July 2014 monsoon experiments.

5. As the operational derivational procedure of INSAT 3D AMVs evolves over time, assessing the impact of these winds will require continuous evaluation.

6. With proposed launch of INSAT 3DR in 2016, the synergistic use of 3D and 3DR data will further enhance the quality of AMVs over Indian Ocean.

7. Launch of GISAT-1 in 2017/2018 will also improve the quality of AMVs over IO.
References:

Acknowledgement:

• IWWG and WMO for financial support for attending 13th IWW

• 13th IWW organizing committee for all support.

• Director SAC/ISRO and Chairman ISRO for all support.

• EUMETSAT/CIMSS/UKMO for using their AMV products and analysis report.
SCATSAT-1 is planned as an in-orbit replacement for the Scatterometer carried onboard Oceansat-2, which is non-functional after 4 ½ years of service.

Orbit: 720 km in sun-synchronous

LAUNCH: End 2016

- IMS-2 Bus
- Ku-Band (13.515 GHz) Pencil beam Scatterometer
- Ground resolution: 50 km x 50 km
- Swath: 1440 Km
- Polarization: HH and VV
- Wind Direction: 0 to 360 deg with accuracy of 20 deg
- Wind Speed: 4 to 24 m/s with accuracy of 10% or 2 m/s

Objectives:

- To provide global wind vector data for national and international user community.
- To provide continuity of weather forecasting services to the user communities.
- To generate wind vector products for weather forecasting, cyclone detection and tracking.
Some upgradation in L1B data product software (Aug-2015) - to improve the data quality

- Increasing the number of GCPs and automatic template based registration for better accuracy.

- To achieve sub-pixel shift measurement, phase correction and gradient based methodologies were used.

- Operationalization of GSICS calibrated radiances.
Identification of clear-sky winds from Water Vapour AMVs

November 2015

<table>
<thead>
<tr>
<th></th>
<th>Cloudy WV</th>
<th>Clear-sky WV</th>
<th>Mixed WV</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMSVD</td>
<td>6.56</td>
<td>4.93</td>
<td>6.43</td>
</tr>
<tr>
<td>BIAS</td>
<td>-0.40</td>
<td>-0.46</td>
<td>-0.41</td>
</tr>
<tr>
<td>NC</td>
<td>18413</td>
<td>2219</td>
<td>20632</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMSVD</td>
<td>6.43</td>
<td>6.43</td>
<td>6.43</td>
<td>6.48</td>
<td>6.55</td>
<td>6.48</td>
<td>6.21</td>
<td>6.10</td>
<td>6.05</td>
</tr>
<tr>
<td>BIAS</td>
<td>-0.41</td>
<td>-0.41</td>
<td>-0.41</td>
<td>-0.44</td>
<td>-0.45</td>
<td>-0.42</td>
<td>-0.48</td>
<td>-0.65</td>
<td>-0.85</td>
</tr>
<tr>
<td>NC</td>
<td>20632</td>
<td>20632</td>
<td>20621</td>
<td>19711</td>
<td>16512</td>
<td>11417</td>
<td>8047</td>
<td>5282</td>
<td>3143</td>
</tr>
</tbody>
</table>
INSAT-3D AMV Quality

Full Disc data
vs
Sector generated data

Period: December 1-15th 2014
Evaluated by NCMRWF
Validation against NCMRWF First guess & RSRW Winds

- Validation for TIR1 and WV Winds (00, 06, 12 and 18 UTC)
 1) All winds (irrespective of Quality Indicator)
 2) Winds with Quality Indicator > 0.8

- Data: 1 to 15 December 2014
Validation against co-located RSRW winds

<table>
<thead>
<tr>
<th>Root Mean Square Vector Difference (RMSVD) : ALL WINDS</th>
<th>Root Mean Square Vector Difference (RMSVD) : (QI >0.8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern Hemisphere</td>
<td>Tropics</td>
</tr>
<tr>
<td>Low Level(1000hPa – 700hPa)</td>
<td>Low Level(1000hPa – 700hPa)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>TIR –Full-Disc</td>
<td>5.54(131)</td>
</tr>
<tr>
<td>TIR –Sector</td>
<td>5.19(742)</td>
</tr>
<tr>
<td>Middle Level(700hPa – 400hPa)</td>
<td>Middle Level(700hPa – 400hPa)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>TIR –Full-Disc</td>
<td>6.10(184)</td>
</tr>
<tr>
<td>TIR –Sector</td>
<td>8.10(395)</td>
</tr>
<tr>
<td>High Level(400hPa – 100hPa)</td>
<td>High Level(400hPa – 100hPa)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>TIR –Full-Disc</td>
<td>8.29(120)</td>
</tr>
<tr>
<td>TIR –Sector</td>
<td>8.29(430)</td>
</tr>
<tr>
<td>WV –Full-Disc</td>
<td>8.48(546)</td>
</tr>
<tr>
<td>WV –Sector</td>
<td>8.10(1349)</td>
</tr>
</tbody>
</table>

- Need further investigation to make it operational