

CURRENT STATUS OF EUMETSAT OPERATIONAL WINDS

R. Borde, M. Carranza, and O. Hautecoeur

Content

- ✓ AMVs from Geostationary Satellite status
 - MTP/MSG Planning
 - Major evolutions impacting AMVs since IWW12
 - Upcoming Changes
- ✓ AMVs from Low earth Orbiting Systems status
 - Metop planning
 - AVHRR Winds
 - Upcoming Changes
- ✓ Other business

MSG space segment configuration

MSG space segment configuration is stable since the end of re-locations and services swaps in early 2013.

Long Term Planning Reference Baseline - 2015

Recent activities. MPEF Release 2.2

Use of Optimum Cloud Analysis (OCA) product for AMV HA. Saved as additional height in the output file.

1. whole disk	CLA	OCA	DIFF
Mean pressure	548.33	513.49	-34.84
Mean QI with FC	69.69	71.77	+2.08
Mean QI without FC	73.95	76.65	+2.69
2. Central inversion area (lat. [-35°,5°], lon. [-20°,20°])			
Mean pressure	619.55	582.51	-37.04
Mean QI with FC	72.90	74.52	+1.62
Mean QI without FC	77.63	79.37	+1.74
3. Jet area (lat. [5°,30°], lon. [-10°,30°])			
Mean pressure	525.44	413.69	-111.75
Mean QI with FC	51.57	64.33	+12.76
Mean QI without FC	55.68	71.47	+15.79

AMV Intermediate Product: CLA vs. OCA, 26 November 2013, 12:15

Recent activities. MPEF Release 2.2

- HA of Water Vapour AMVs
 - ✓ New HA method for WV clear sky AMVs
 - ✓ Correction of Low levels Cloudy WV winds

Channel	Number	Clear-sky		
		OLD	NEW	NEW - OLD
WV 6.2 µm	7,640	36.6	46.4	+9.8
WV 7.3 µm	7,730	30.1	51.5	+21.4

^{72015 at 12:15:00} WV 6.2	AMVintm - Pressure, Chan@05, 11/06/2015 at 12	:18:00
1050		1050
875		875
700		- 700
525 g		525 €
350		3 50
175		175
	The same of the sa	
	1050 273 770 520 2 350 175	770 770 770 770 770

Channel	Number		Cloudy	
		OLD	NEW	NEW - OLD
WV 6.2 µm	690	1.9	65.5	+63.6
WV 7.3 µm	30	4.0	69.7	+65.7

Recent activities. MTG Prototype

- Commissioning of Meteosat 11
- MTG prototype developed from MSG code
 - √ 3 images, No averaging
 - ✓ Use OCA as HA baseline.
 - ✓ MTG prototype adapted to Himawari data.

See Manuel's talk, this session: 'Generation of Himawari-8 AMVs using the future MTG AMV processor.'

- Nested tracking implemented on our test chain (Collaboration with J. Daniels and W. Bresky).
 - ✓ Run using several target sizes configurations.
 - ✓ Comparison against MSG algorithm on 5 days period.

Future activities.

- Operations
 - ✓ Met 8 over IODC (autumn 2016)
- MTG prototype
 - ✓ Comparison of MSG and MTG codes performances
 - ✓ MTG prototype to be adpated to MET8 RSS data (L2PF activities)
 - ✓ Use OCA microphysics to improve AMV HA.
 - ✓ Compare MTG prototype to GeoKompsat prototype using Himawari data (Collaboration with KMA)
 - ✓ Participation to 3rd AMV intercomparison study.

Current Status of Metop Satellites

- The Metop-A satellite continues to be a valuable component of the EUMETSAT Polar System despite some instrument degradations.
- The Dual Metop configuration gives robustness to the core service.

	Metop-A Metop-B	
SVM		
PLM	HRPT not global	
IASI	Concern over magnets lifetime. Electronics Side B due to CC speed flags.	Concern over magnets lifetime
GOME	Swath 960km, UV Throughput	Swath 1920km, UV Throughput
GRAS	Improved Performance	Improved Performance
ASCAT		
MHS	H3 & 4 Improved Performance	
AMSUs	H3,7, 8 not usable: No ATOVS L2	
AVHRR		
HIRS	Ageing effects apparent.	LW channels cyclic degradation
SEM		
S&R		CRA Problem
ADCS	ARGOS-3 Service	CRA Problem: ARGOS-2 only

Baseline EPS-Metop Orbit Position Planning (Fixed GT)

Council (Q4 2012) agreed lifetime extension planning:

- Last OOP in 2015
- Drift until at least mid-2018
- De-orbit within 25 years (compliant with ISO 24113)
- •Based on Metop-C Launch in Q1 2018

30 mins LTAN drift with fixed GT leads to phase drift. 20 mins AOS to AOS separation maintained

EPS-Metop Orbit Position Option: 2016 OOP with LTAN mission extension

Chart assumes last OOP

Manoeuvre in Autumn 2016

The single burn gains 5 months on the nominal fixed Ground Track.

Phase drift is stopped, with ground track drift to ensure at least 20 minutes AOS separation is available between Metop-A and Metop-C.

Commissioning of Metop-C at a different phase position to routine operations.

Recent activities on AVHRR winds.

- Development of Global AVHRR wind product.
- Development of Triplet mode AVHRR wind product over polar regions.

See Olivier's talk, this session: 'Derivation of wind vectors from Metop AVHRR at EUMETSAT.'

AVHRR wind products	Number of satellite used	Number of images used	Time to derive the product (~min)	Coverage
Single Metop polar	1	2	100	Polar areas
Global AVHRR	2	2	50	Global
Triplet mode	2	3	100	Polar areas

AVHRR winds Examples

Single Metop polar, 17/09/2014, 1:31-1:52

Global AVHRR, 18/09/2014, 9:04-9:46

EUMETSAT AVHRR winds in NWP models ©

- Single AVHRR wind product assimilated at Met Office (Feb 2015) and ECMWF (Feb 2016). Lat>60°
- Global AVHRR wind product assimilated at ECMWF (Feb 2016). 40°<Lat<60°.

Courtesy K. Salonen an N. Bormann: Atmospheric Motion Vector observations in the ECMWF system: Fifth year report

Other recent activities on AVHRR winds.

- Investigation of Metop A end of life scenario on wind products.
- External study on comparison of AVHRR wind products (TROPOS)
 See A. Horvath's poster: 'Evaluation of dual-mode METOP CMVs.'

Courtesy A. Horvath Geographic distribution of METOP wind speed bias averaged over all levels. All comparison CMVs are from CIMSS. Geostationary: GOES-15/13, METEOSAT-10/7, MTSAT-2 and polar: MODIS-Terra.

Future activities on LEO satellites.

- Operations
 - ✓ End of life of Metop A
 - ✓ Commissioning of Metop-C (2018)
- AVHRR wind products
 - ✓ Extension of AVHRR triplet mode coverage setting the 2nd image as reference (Q4 2016)
- EPS-SG METImage wind products
 - ✓ Documentation updates (ATBD and PGS)
 - ✓ Start development of METImage AMV prototype code

Other recent activities.

- Development of 3D wind product from IASI Level2 temperature and humidity fields.
 - ✓ Collaboration with P. Héas from INRIA (Rennes in France)
 - ✓ Use 3D optical flow software
 - ✓ Proof of concept tested on fo L2 product s

See Olivier's talk, session 7: 'E IASI level 2 products.' (Thur

Other business future activities.

- Development of 3D wind product from IASI Level2 temperature and humidity fields.
 - ✓ Get consolidated results by end 2016
 - ✓ Decision to implement this algorithm or not on operation in 2017
- Investigate AMV extraction from Sentinel 3 SLSTR instrument.
 - ✓ Strategy under investigation.
- ITT on the investigation of recurrent AMV fast biase over tropics.
 - ✓ Presently on EUMITS.

Thanks for attention

