

Royal Netherlands Meteorological Institute Ministry of Infrastructure and the Environment

Application of Aeolus Winds Ad.Stoffelen@knmi.nl

Gert-Jan Marseille, KNMI Harald Schyberg, Met No

- 1. High vertical resolution radiosonde clouds and implications for Aeolus measurements
- 2. Theoretical tool for testing all the things we fancy so much in data assimilation: thinning, QC, bias, correlated error

LIPAS - Aeolus wind simulation

1 orbit on 1/1/2007

true zonal wind (UKMO)

true HLOS wind (Rayleigh channel)

true HLOS wind (Mie channel)

110 mJ Aeolus BM/CM HLOS winds

• CM more noisy but larger coverage

HLOS wind statistics; 1 month

Hi-res radiosonde and Aeolus

- Radiosondes provide high-resolution vertical variability
- Houchi et al. (2010) studied wind and shear
- Extended now with cloud vertical variability (and aerosol)
- Radiosondes also provide T and p
- Zhang et al. (2010) applied to De Bilt for 2007

Hi-res radiosonde shear

Cloud layer statistics

- 1/3 of cloud layers are thinner than 400m
- Such layers cause nonuniform backscatter and extinction
- Mean backscatter height will be uncertain
- Wind and wind shear will be biased

Centre-of-Gravity (COG)

$$COG = \frac{\int_{z_0}^{z_1} z w_k(z) dz}{\int_{z_0}^{z_1} w_k(z) dz}, \quad k = \{p, m\}$$

w(z) is the signal strength inside the Aeolus bin as a function of altitude z

- 1. Particle-free bin
- Analytical calculation (no T,p dependence)
- Using LIPAS and (T,p) from hi-res radiosondes

- 2. Bins including cloud/aerosol layer
- Analytical
- Using LIPAS and (T,p, cloud, aerosol) from hi-res RAOB

Particle free bin – analytical

- Rayleigh height assignment error is height dependent (currently a constant correction factor of 0.47 is used in L2Bp)
- Typical atmosphere
 - Stratosphere, 2 km Rayleigh bin, wind-shear 0.01 s⁻¹
 - ∆H=40 m ~ 0.4 ms⁻¹ bias
- Biases exceed mission requirement in more extreme scenes (tropopause jet stream, PBL) if height assignment error is not corrected

height assignment error as function of Rayleigh channel bin size

(T,p) from radiosonde database

- 1 year radiosonde data over De Bilt => (T,p) => $\beta_m(z)$ => w(z) => COG
- Height assignment errors are slightly larger than from analytical expressions
- Not very sensitive to *T*,*p* errors and predictable

because wind malTers

Use AUXMET to correct for Rayleigh channel height assignment errors in L2B optical properties code

RMSE wind error (systematic)

Aeolus data assimilation

because wind malTers

Single obs. Experiment Over the English channel 500 hPa analysis increment

Background error length scale $\sim 400 \text{ km}$

Aeolus burst-mode observation separated by 200 km (< **B** length scale)

Aeolus continuous mode observation separated by 86 km

Representativeness error

From ODB ECMWF T1279

- 0.8 m/s on ASCAT 12.5 km wind
- Upper troposphere: 2.1 m/s on aircraft components

Along-track accumulation reduces the representativeness error

Accumulation length of observations such that the resulting spectrum matches the model spectrum:

- (1) Upper troposphere: aircraft accumulation along 100-150 km track
- (2) Ocean surface: ASCAT accumulation along 85-100 km track

Aeolus representativeness error negligible for ~ 100 km along-track accumulation

1D theoretical tool

- Usual meteorological analysis equations
- Fully solved
- 1D = horizontal
- Horizontal characteristics from ECMWF and HARMONIE model and (LIPAS) Aeolus observations
- Introduction of bias, correlation, averaging, thinning and misspecification

Effect of accumulation distance on analysis quality

- Assume obs error ~ 1/ SQRT(accumulation length)
- Longer accumulation → more accuracy, but fewer samples
- Example: 60N background statistics, continous 110 mJ, 500hPa (Rayleigh channel average obs error data from LIPAS)
- Obs errors assumed uncorrelated
- Representativeness error not included

Correlated representativeness error

- 60N background statistics, continous 80 mJ, 500hPa (Rayleigh channel average obs error data from LIPAS), 2/3 B bandwidth
- Representativness error variances based on assuming global model effective resolution 7*Δx (112 km)
- Triangular O correlation structure with half basis of 112 km
- Much lower analysis quality
- Optimal accumulation length is now about the effective model resolution

Conclusions theoretical tool

Equator

Tr(A)/tr(B)	Burst 110 mJ	Cont 110 mJ	Cont 80 mJ
50 hPa	0.4004	0.3240	0.4067
250 hPa	0.3676	0.2472	0.3140
500 hPa	0.4557	0.3099	0.4269
700 hPa	0.4758	0.3927	0.4727

Luilluullui uepenuence					
500hPa tr(A)/tr(B)	Burst 110 mJ	Cont 110 mJ	Cont 80 mJ		
60N	0.4557	0.3099	0.4269		
45N	0.3997	0.2664	0.3712		

0.2045

0.2856

0.3120

I atitudinal donandonao

- From $BM \Rightarrow CM$ increases impact substantially
- From 110 mJ \Rightarrow 80 mJ reduces impact substantially (CM 80 mJ ~ BM 110 mJ)
- Aeolus impact is maximum around 250 hPa
- Aeolus impact is maximum in the Tropics
- Impact is maximized for ~85 km accumulation length

Main conclusions theoretical tool

- Observation error correlation up to 0.1-0.15 not very detrimental
 - Correlation of 0.1 corresponds to an increase of random error of 0.2 m/s
 - Correlation of 0.38 corresponds to an increase of random error of 0.7 m/s
- Biases > 0.5 m/s are detrimental
 - Negative impact for biases exceeding 1 m/s
- Impact of non-optimal B-matrix is substantial

	Burst 110 mJ	Cont 110 mJ	Cont 80 mJ
Obs error std (m/s)	1.5678	1.5889	2.1315
Perfect B tr(A)/tr(B)	0.4557	0.3099	0.4269
Imperfect B tr(A)/tr(B)	0.5775	0.4035	0.5274

ESA VHAMP, TN8

Table 7-9. Effect of non-perfect B matrix. Background error data are for 60N, 500 hPa.

• Hi-res radiosondes are very useful for Aeolus simulation

• A theoretical data assimilation tool can be useful to comprehend data assimilation system characteristics

