Aeolus preparations and indications of NWP impact

by Michael Rennie, Andras Horanyi and Lars Isaksen Twelfth International Winds Workshop

Acknowledgements:

KNMI: Jos de Kloe, Ad Stoffelen, Gert-Jan Marseille; ECMWF: David Tan; DLR: Oliver Reitebuch; DoRIT: Dorit Huber; ESA/ESTEC: Anne Grete Straume, Frank de Bruin; Météo-France: Alain Dabas, Christophe Payan. Plus many other people who have contributed to the L2B/C processing over the years. The activities are supported by ESA contracts: 18555/04/NL/ MM and 104080

Outline

- **1.** Aeolus L2B wind product
- 2. Simulations of Aeolus
- **3.** Impact of HLOS winds at ECMWF

Slide 2

1. What is Aeolus measuring?

Counting electrons (photons); output from spectrometers

Counts calibrated against frequency

- Frequency shifts (Doppler effect) occur due to relative motion of emitter
- Atmospheric molecules/particles are the emitter average motion is the <u>wind</u>
- > At UV:
 - Rayleigh scattering: clear atmosphere
 - Mie scattering: top of dense clouds/aerosols; within/below partially transparent clouds/aerosols
- Still optimistic for good NWP impact
 - Horizontal line-of-sight (HLOS) wind profiles still lacking in GOS
- Getting ready for a launch in late 2015

Sampling

Winds for NWP: Level-2B product

Level-2B processor provides

- > HLOS winds
 - Geolocated geometric height, lat, lon, azimuth angle, time
 - Error estimates for each wind, quality flags
- Flexible classification into wind types cloudy or clear (currently)
- Flexible horizontal averaging of spectrometer counts
 - Some control of <u>noise</u> and <u>representativity</u> of observations
- Rayleigh winds corrected for temperature, pressure and Mie crosstalk
- In future: estimates of optical properties (KNMI)
- Many processing options controllable from settings file

Research mission; encourage users to play with L2B processor

L2B processor software package:

- Available to download (e.g. for use by NWP centres):
 - http://www.ecmwf.int/en/research/projects/aeolus

ADM-Aeolus Level-2B Processor Package

Version 2.00 (2012-12-17)	
Downloads	size
Release note	832 KB
Source code	2.3 MB
Data pack	137 MB
Install test	21 MB
Documentation	5.0 MB
SAF documents	1.3 MB
Extra data sets	11 MB

- Code, documentation, test data
- Highly portable (mostly Fortran)
- New version (2.10) available soon with:
 - L2B EE-to-BUFR converter
 - Much improved speed; bug fixes

Aeolus at ECMWF http://www.ecmwf.int/en/research/projects/aeolus

- Develop L2B processor (with KNMI)
- > Operational L2B processing:
 - During mission lifetime;
 - products sent to ESA
 - Linked to data assimilation cycles for a priori T, p
- Advanced monitoring of Aeolus data
- Involved in CAL/VAL during Commissioning Phase
- >Assimilate if proven positive impact

Slide 7

2. Simulating Aeolus winds

Preparing processors with simulations:

Indications of Aeolus observation quality

Example simulator input Derived CALIPSO log₁₀(scattering ratio) 355 nm (KNMI)

Output: L2B "clear-Rayleigh" HLOS wind

ECMWF

Example L2B HLOS error statistics

Simulated Aeolus L2B wind quality

Random errors:

1.5-3 m/s standard deviation

Systematic errors:

- Some surprises; larger than hoped for
- One source of Rayleigh bias will be corrected soon
- Mie biases: wind shear/thick range bins/thin particle layers

➢ <u>Caveat</u>:

- Simulations!
- Real data will probably be different

Worth it?

Have fixed many bugs with this process

Slide 13

100 km averaging + appropriate noise (2 m/s)

GADS data along flight-track

80 km averaging + appropriate noise (2.2 m/s)

GADS data along flight-track

50 km averaging + appropriate noise (2.8 m/s)

GADS data along flight-track

25 km averaging + appropriate noise (4 m/s)

3. Wind impact investigation at ECMWF

work by A. Horanyi , C. Cardinali, M. Rennie and L. Isaksen

- > 1 month OSEs using *in situ* observations:
 - > aircraft; radiosondes; PILOT and wind profilers
- Assessed impact of:
 - Different combinations of wind and mass obs (*u*, *v*, *T* and *q*)
 - > which gives most impact relative to current OS?
 - Assimilation of HLOS winds
 - \succ convert (u, v) → HLOS
 - > can real single-component wind give useful impact?
 - Increasing HLOS random and systematic error
 - > what reduction in accuracy can we tolerate?
 - indications for Aeolus

OSE results: comparison of different experiments

Reference = no upper-air *in situ* obs

Distribution of observations

249984 114959

52865 24311

11179

5141

2364 1087

499 229

105 48 22

10

mostly aircraft at 100-400 hPa

OSE results: Impact of zonal HLOS

- largest in tropical regions
- Impact also larger in data-rich areas

ECMWF

Metric: reduction of vertically integrated total energy error for 24 hr FC

Summary of impact experiments

- Wind and mass comparison:
 - > wind more beneficial than mass when added on top of the full satellite observing system
 - particularly in Tropics
- HLOS assimilation:
 - HLOS gives large fraction of vector wind impact promising for Aeolus
 - Zonal component impact a bit larger than meridional
 - Larger random errors not too damaging
 - 2 m/s bias: large negative impact therefore critical to minimise Aeolus "unknown" biases
 - > study has limitations for assessing Aeolus potential impact

Slide 22

Paper submitted to QJRMS

Thanks for listening. Any questions?

Aeolus L2B processing software available to download: http://www.ecmwf.int/en/research/projects/aeolus

Wind vector impact per ob; dependence on height

70-200 hPa winds provide most impact per ob. Therefore can expect new obs to be most beneficial here – Aeolus should provides lot of Rayleigh and Mie winds here

20/06/2014 Aeolus preparations

Slide 24

L2Bp inputs

ESA provide:

- L1B data (typically 1 file per orbit)
 - Measurement level spectrometer counts
 - Geolcation information
 - Uncorrected Rayleigh winds
 - Mie calibration information
 - Zero wind correction
- AUX_RBC_L2: Rayleigh calibration taking account of T and p dependence (uncertain, but perhaps once per week)

• Users provide:

- AUX_MET; profiles of T, p along Aeolus orbit
- AUX_PAR_2B; processor settings file

FCMWF