

MISR Cloud Motion Vectors, ERA-I Reanalysis Winds, and Stereo Heights

Dong L Wu

NASA Goddard Space Flight Center Greenbelt, Maryland

Acknowledgment: MISR science and engineering teams

- MISR CMV Data
 - Sampling and coverage
 - Geo-registration
- MISR and ERA-Interim Comparison
 - Monthly mean
 - Effects of orographic clouds
- Stereo CMV Techniques from Space
 - Dual-GEO approach
 - Dual-LEO stereoscopic approach

https://eosweb.larc.nasa.gov/project/misr/2tc_table

CTH = Cloud Top Height, CMV = Cloud Motion Vector

PBL Dynamics and Processes

Resolution: 1.1 km Precision: height: ~100 m wind: ~0.3-1 m/s

- Orbit-to-orbit variations of a few pixel size
- DA camera (70° aft) worst
- 1 pixel (275m) ≈ 6 m/s

SOM grid

1111111

Courtesy of Nancy Baker (Presentation in the 2nd JCSDA Symposium)

MISR v-wind innovation 2012.10.27.00 – 2012.10.29.06

- Occasional large geo-registration error
- Entire orbit of MISR meridional winds affected
- Evident in MISR-GRL analysis Vwind differences

MISR v-wind Difference (m/s)

Large Offsets Likely due to Geo-Registration Error

Recommendations:

- Near-real time O-B check for rejecting the bad MISR orbits.
- Investigation and development of more robust MISR geo-registration.

- MISR CMV Data
 - Sampling and coverage
 - Geo-registration
- MISR and ERA-Interim Comparison
 - Monthly mean
 - Effects of orographic clouds
- Stereo CMV Techniques from Space
 - Dual-GEO approach
 - Dual-LEO stereoscopic approach

January (2001-2012)

ERA-I Diff **MISR** ERA-Interim Zonal Wind (m/s) MISR Zonal Wind (m/s) MISR-ERA Wind Diff (m/s) 32 28 32 28 24 20 16 12 16 14 12 10 8 6 24 20 16 12 12 8 8 S 4 0 0 0 -6 -8 16 -16 -10 -12 -14 20 -20 -24 -24 -28 -28 - 32 -32 -16 -90 -60 -30 30 60 90 -90 -60 -30 0 30 60 90 -90 -60 -30 30 60 90 0 0 Latitude Latitude Latitude MISR Meri Wind (m/s) ERA-Interim Meri Wind (m/s) MISR-ERA Wind Diff (m/s) 32 32 16 28 28 14 12 10 8 6 24 20 24 20 16 12 16 12 12 2 0 E Y 0 .8 -4 -6 -8 16 -16 -10 -12 -20 -20 24 -24 -28 -28 -14 -32 -32 -16 -90 -30 30 60 90 -90 -60 -30 0 30 60 90 -90 -60 -30 30 60 90 -60 0 0 Latitude Latitude Latitude

Zonal (U)

Height (km)

leight (km)

• Slower MISR winds in the poleward side of jets

Meridional (V)

- Stronger poleward MISR winds in the upper trop
- Slightly southward bias in the lower trop

ERA-I winds are too zonal at the tropical jets

July (2001-2012)

 Slower MISR winds in the poleward side of jets

Meridional (V)

(km)

Height (

- Stronger poleward MISR winds in the upper trop
- Slightly southward bias in the lower trop

ERA-I winds are too zonal at the tropical jets

U

V

Lower Tropospheric Winds

January, z=0-5km

14 12 10 8 6 4 2 1 0 -1 -2 -4 -6-8 -10-12-14-16

16

16 14 12 10 8 6 4 2 1 0 - 1 -2 $^{-4}$ -6 -8 -10-12-14-16

16

14

12

10 8 6

4

2

1

0

-1

 $^{-2}$

-4

 $^{-6}$

-8

Lower Tropospheric Winds (2)

16

14

12

10 8 6

4

2

1

0

- 1

-2

-4 $^{-6}$

-8

-10

-12

-14

-16

V

8 6 4 2 1 0 -1-2 -4 -6 $^{-8}$ -10-12 -14-16

8 6 4 2 1 0 -1-2 $^{-4}$ -6 $^{-8}$ -10-12 -14-16

•

MISR weaker

Greenland gyro.

Arctic Region

UMISR Zonal Wind (m/s) ERA-Interim Zonal Wind (m/s) MISR-ERA Wind Diff (m/s) Lower Troposphere 16 14 12 10 8 6 4 2 16 14 12 10 8 6 4 2 16 14 12 10 8 6 (MISR-ERA): 0 -1 -2 -4 -6 -8 -10 -12 -14 -16 0 -1 -2 -4 -6 -10 -12 -12 -14 -16 **MISR U wind slower** over the Arctic Ocean. MISR Meri Wind (m/s) ERA-Interim Meri Wind (m/s) MISR-ERA Wind Diff (m/s) 16 14 12 10 8 6 4 2 16 14 10 86 4 2 16 14 12 10 8 6 4 2 **MISR V** wind less poleward over 0 -1 -2 -4 -6 -8 -10 -12 -14 -16 0 0 landmasses. -1 -2 -4 -6 -8 -10 -12 -14 -1 -2 -4 -6 -10 -12 -14 -16

July winds at 0-5km

0 -1 -2 -4 -6 -8 -10 -12 -14 -16

Antarctic Region

Lower Troposphere (MISR-ERA):

- **MISR-ERA** biases correlated strongly to topography
- MISR v-wind more poleward

January winds at 0-5km

Effects of Topography

MISR Zonal Wind (m/s)

 $\begin{array}{c} 16\\ 14\\ 12\\ 10\\ 8\\ 6\\ 4\\ 2\\ 1\\ 0\\ -1\\ -2\\ -4\\ -6\\ -8\\ -10\\ -12\\ -14\\ -16\end{array}$

ERA-Interim Zonal Wind (m/s)

 $\begin{array}{c}
16\\
14\\
12\\
10\\
8\\
6\\
4\\
2\\
1\\
0\\
-1\\
-2\\
-4\\
-6\\
-8\\
-10\\
-12\\
-14\\
-16\end{array}$

Kerguelen Islands ~80 x 90 km

January U at <5km

 $\begin{array}{c} 16\\ 14\\ 12\\ 10\\ 8\\ 6\\ 4\\ 2\\ 1\\ 0\\ -1\\ -2\\ -4\\ -6\\ -8\\ -10\\ -12\\ -14\\ -16\end{array}$

Effects of Topography (2)

Argentine Patagonia

January mean winds at 0-5km

16 14 12 10 8 6 4 2 1 0 - 1 -2 -4 -6 -8 -10-12 -14-16

16 14 12 10 8 6 4 2 1 0 -1-2 $^{-4}$ -6 -8 -10 -12 -14-16

16

14

12

10

8

6

4

2

1

0

-1

-2

 $^{-4}$

-6

-8

V

- MISR CMV Data
 - Sampling and coverage
 - Geo-registration
- MISR and ERA-Interim Comparison
 - Monthly mean
 - Effects of orographic clouds
- Stereo CMV Techniques from Space
 - Dual-GEO approach
 - Dual-LEO stereoscopic approach

Radar (2D Wind)	LIDAR (2D Wind)	Single Satellite (3D Wind)		Dual and Multi Satellites (3D Wind)		
		LEO	GEO	LEO	GEOStereo	LEOStereo
NASA/NScat	ESA/Aeolus (2015/16)	 MISR¹ 	• GOES	MetOp A/B	• GOES-E/W	• AATSR/ ATSR-2
 NASA/QScat ESA/AScat ISRO/OScat CMA/HY1-2 NASA/RScat NASA/ CYGNSS 	NASA/3D- WIND ¹ (2025+)	• AASTR	 MeteoSat 7-10 MTSAT FY2 	• MODIS/ VIIRS • N18-20 	• Meteo-7/10 • FY2-FY2 • GEO/LEO 	 MetOp- SG Proposals
Swath	Curtain	Swath	Disk	Swath	Partial Disk	Swath
Sea surf wind	Wind profiles	Cloud-top, thick-aerosol, water vapor winds				
∆x =12-50 km ∆u <2 m/s	∆z =1-3 km ∆y =50 km? ∆u =1-3 m/s	$\Delta z = 0.5 - 1 \text{ km}$ $\Delta z = 1 - 3 \text{ km}$ $\Delta x = 1 - 20 \text{ km}$ $\Delta x = 10 - 40 \text{ km}$ $\Delta u = 1 - 3 \text{ m/s}$ $\Delta u = 1 - 3 \text{ m/s}$		-3 km)-40 km -3 m/s	???	$\Delta z = 200 \text{ m}$ $\Delta x = 1.5 \text{ km}$ $\Delta u < 1 \text{ m/s}$ $\Delta w = ? \text{ m/s}$

¹ CGMS-41 NASA whitepaper (NASA WP-5) [D. Wu and M. Kavaya]

2-GOES Concept:

pointing knowledge and time-sync are critical

IR vs Stereo Height: 2-GOES Measurements Importance of Vertical Motion

IR vs. Stereo Height: A Pattern Height

NASA

Spaceborne Atmospheric Boundary Layer Explorer (SABLE)

- MISR zonal winds are slower than ERA-I in the January upper trop (UT) where the latitudinal gradient of polar jets is large.
- MISR meridional winds show a stronger poleward flow in the UT, compared to ERA-I
- MISR CMVs have occasionally large bias due to geo-registration problems, mainly affecting the meridional wind.
- Topography seems to produce slower lee-side wind speed in MISR than in ERA-I, but is small compared to other factors.
- Lidar/Radar winds and CMVs are complementary. Overlapped samples provide valuable cross-calibration globally. The CMV technique from space, providing a much wider swath (or coverage), is 5x-10x cheaper than wind-lidars (still technically challenging from space).