Characterising AMV height assignment errors in a simulation study

Peter Lean^{1*}

Stefano Migliorini¹ and Graeme Kelly²

* EUMETSAT Research Fellow, ¹ University of Reading, UK ² Met Office, UK

Background: Atmospheric Motion Vectors (AMVs)

- Wind retrievals from satellite imagery
 - actually observations of apparent cloud motion

- Method:
 - Feature detection and tracking between consecutive images
 - Height Assignment performed (usually assume AMV represents winds at estimated cloud top height)
- Vertical representivity:
 - Much discussion about whether AMVs are representative of winds at cloud top or in fact representative of winds within cloud.
 - Current NWP observation operators assume AMV represents wind at single height.
- Simulation studies:
 - Several previous studies: is this technique capable of providing useful insights into AMV representivity which give real world improvements?

Motivation: Latest generation of NWP models have very realistic representation of cloud features

- 1. Understand vertical representivity of AMVs to help design an improved observation operator for assimilation in NWP models.
- Compare and contrast simulation study results against standard
 O-B stats to understand how useful this technique is.
- 3. Determine if AMV error characteristics depend on cloud type.
- 4. Apply results to current UK AMV processing.

Talk outline:

- 1. AMV error budget
- 2. Experiment setup
- 3. How realistic are the experiments?
- 4. AMV error characteristics
- 5. Testing different vertical representivity assumptions
- 6. NWP assimilation trial
- 7. Conclusions

AMV error budget

Misfit between AMVs and model background:

 $\epsilon_{passign}$ - error in estimated cloud top

Misfit between synthetic AMVs and model truth:

Errors
$$\epsilon = \mathbf{y} - H(\mathbf{x}_{t}, p_{assign})$$

 $\epsilon = f(\epsilon_{y}, \epsilon_{H}, \epsilon_{xt}, \epsilon_{passign})$
Instrument errors removed
 $\epsilon_{passign} = g(\epsilon_{RTTOV}, \epsilon_{xt}, \epsilon_{technique})$
Instrument errors removed
 $\epsilon_{passign} = g(\epsilon_{RTTOV}, \epsilon_{xt}, \epsilon_{technique})$

For simulation study to be useful:

ε **< d**

i.e. AMVs should be closer fit to model truth than in O-B (which includes forecast and instrument errors).

Cloud top height estimation techniques are very sensitive to cloud properties:

Caragast arrars removed

error characteristics from simulated radiances from model clouds may be different from those for real clouds

Experiment set up

Simulation framework

- Building upon previous AMV simulation studies:
 - Wanzong et al (2006)
 - von Bremen et al (2008)
 - Stewart and Eyre (2012)
 - Hernandez-Carrascal et al (2012)
- Met Office UKV model
 - 1.5km grid length NWP model
- RTTOV 11 radiative transfer
 - produces simulated brightness temperatures from model prognostic fields using parameterized treatment of cloud scattering.
- Nowcasting SAF (NWCSAF) cloud and AMV products
 - produces AMVs from the simulated satellite imagery.

NWCSAF AMV workflow

NWCSAF AMV workflow

EUMETSAT AMV product

NWCSAF mesoscale AMV product (AEMET)

Synthetic high resolution AMVs

Trial period: simulated brightness temperatures

Wide range of meteorological situations sampled:

-maritime convection, frontal cloud, thin cirrus, stratocumulus over inversion etc

-6 weeks: long period of study compensates for relatively small domain

How realistic are the simulations?

Realism of simulated brightness temperatures

Realism of simulated AMVs: distribution of assigned heights

Real AMVs

Realism of simulated AMVs: distribution of QI values

40

60

QI

80

100

1000 500 0

0

20

Used QI **without** model background consistency check

Real AMVs

More AMVs with low QI values in simulated dataset

= increased tracking errors?

Realism of simulated AMVs: distribution of cloud types

Real AMVs

Error characteristics of AMVs: real v simulations

Error as function of QI threshold

Used QI without model background consistency term

Real AMVs

QI is a provides a good estimate of AMV errors.

Level of best fit stats:

real

V

simulated

Misfit between AMV and model: simulated v O-B

QI>80

includes forecast error and instrument error

Q. Why are the simulated errors so large?

Due to increased height assignment errors or tracking errors?

Misfit between AMV and model at level of best fit

Errors at level of best fit:

Simulated Real **RSMVD** Bias RMSVD Bias **Cloud category** [ms⁻¹] [ms⁻¹] [ms⁻¹] [ms⁻¹] Low opaque 1.37 -0.19 1.55 -0.05 Medium opaque 1.41 -0.15 1.63 -0.06 2.43 0.07 2.12 0.04 High opaque -0.16 2.19 0.20 High semi-transparent 1.98

Strongly suggests that height assignment errors are increased for simulated high clouds.

If increased error in simulated AMVs was due to increased tracking error: wouldn't expect to find a good fit at any level.

If increased error in simulated AMVs was due to increased height assignment error: expect there would be some height which gives a good fit.

QI>80

Synthetic AMV error budget

Real 'O-B'Simulated 'Obs-Truth' $d = y - H(x_f, p_{assign})$ $\varepsilon = y - H(x_t, p_{assign})$ $d = f(\varepsilon_y, \varepsilon_H, \varepsilon_{xf}, \varepsilon_{passign})$ $\varepsilon = f(\varepsilon_y, \varepsilon_H, \varepsilon_{passign})$ $\varepsilon_{passign} = g(\varepsilon_{instrument}, \varepsilon_{xf}, \varepsilon_{technique})$ $\varepsilon_{passign} = g(\varepsilon_{RTTOV}, \varepsilon_{technique})$

For simulation study to be useful:

ε **< d**

We have shown:

- ϵ < d for low clouds: simulation study is useful.
- ε > d for high clouds:
 - primarily due to increased $\epsilon_{\text{passign}},$ most likely from $\epsilon_{\text{technique}}$
 - simulation study results for these clouds not useful.

Vertical representivity assumptions ϵ_{H}

Synthetic AMV error budget

Real 'O-B'Simulated 'Obs-Truth' $d = y - H(x_f, p_{assign})$ $\varepsilon = y - H(x_t, p_{assign})$ $d = f(\varepsilon_y, \varepsilon_H, \varepsilon_{xf}, \varepsilon_{passign})$ $\varepsilon = f(\varepsilon_y, \varepsilon_H, \varepsilon_{passign})$ $\varepsilon_{passign} = g(\varepsilon_{instrument}, \varepsilon_{xf}, \varepsilon_{technique})$ $\varepsilon_{passign} = g(\varepsilon_{RTTOV}, \varepsilon_{technique})$

Observation operator, H:

- Maps model state into quantity equivalent to AMV observation.
- Requires you to make an assumption about what an AMV represents
 - e.g. assumption A: AMV represents wind at cloud top height.

assumption B: AMV represents mean wind in 100hPa layer beneath cloud top.

Helps understand vertical representivity of AMVs:

- change H, and see how **d** and ϵ change.
- indicates if error in observation operator, ϵ_{H} is increased or decreased.

Vertical representivity of AMVs

- All AMV observation operators used in NWP data assimilation assume AMVs are representative of winds at cloud top height.
- Several studies have shown that AMVs are more representative of winds within a layer beneath the cloud top.
- Hernandez-Carascal and Bormann (2014) showed that much of the benefit of the layer averaging could be gained by simply lowering the assigned height.
- Here, we compare 3 vertical representivity assumptions:
 - 1. AMVs representative of winds at cloud top height (control)
 - 2. AMVs representative of winds at single height beneath cloud top.
 - 3. AMVs representative of winds in layer beneath cloud top.

Vertical representivity: single level beneath assigned height real v simulated

• Finding optimal offset for lower assigned height

 Vary layer thickness and find which thickness gives minimum RMSVD

Semi-transparent high clouds

For layer centre 30hPa below assigned height.

Vertical representivity: layer mean beneath assigned height real v simulated

 Optimal offset and layer thickness found from Feb 5th – Mar 5th 2013 real data

Cloud category	Offset [hPa]	Layer thickness [hPa]
Low	40	450
Medium	10	275
High opaque	40	250
High semi- transparent	30	150

i.e. layer centred beneath cloud top gives optimal fit to AMVs.

QI>80

Results from Feb 5th – Mar 5th, 2013 (real data) :

	At assigned		
Cloud category	RSMVD [ms⁻¹]	Bias [ms⁻¹]	
Low opaque	4.69	-0.56	
Medium opaque	5.34	-1.08	
High opaque	6.54	-2.50	
High semi- transparent	5.88	-1.27	

- Optimal layer gives best fit for all categories.
- Slow bias in upper level AMVs is almost completely removed

Improved fit using new vertical representivity assumptions

```
Results from Oct 14<sup>th</sup> – Nov 2<sup>nd</sup>, 2013 (real data):
```

QI>80

Independent trial period using same optimal offset, thickness paramaters derived from previous case study.

	At ass	t assigned Lower assigned Optimal layer		Lower assigned		al layer
Cloud category	RSMVD [ms⁻¹]	Bias [ms⁻¹]	RMSVD [ms ⁻¹]	Bias [ms⁻¹]	RMSVD [ms ⁻¹]	Bias [ms ⁻¹]
Low opaque	4.29	-1.41	4.18 (2.6%)	-0.99	3.67 (14.5%)	-0.33
Medium opaque	6.86	-1.23	6.77 (1.3%)	-0.89	6.09 (11.2%)	-1.42
High opaque	8.85	-2.95	7.66 (13.4%)	-0.13	6.96 (21.4%)	-0.12
High semi- transparent	8.57	-3.02	7.45 (13.1%)	-1.41	7.05 (17.7%)	-1.04

• Results indicate that improvement from using layer mean is robust.

• Slow bias still significantly reduced in independent trial period.

Removal of slow bias

NWCSAF Met-10 IR 10.8, October 2013, Above 400 hPa

NWCSAF Met-10 IR 10.8, October 2013, Above 400 hPa

All latitude bands

NWCSAF AMVs

(re- assigned height)

All latitude bands

NWCSAF AMVs

(standard assigned height)

Slow bias

NWCSAF Met-10 IR 10.8, February 2014, Above 400 hPa

All latitude bands

NWCSAF AMVs

(standard assigned height)

Meteosat-10 IR 10.8, February 2014, Above 400 hPa

All latitude bands

EUMETSAT AMVs

(only within NWCSAF domain)

NWCSAF Met-10 IR 10.8, March 2014, Above 400 hPa

Meteosat-10 IR 10.8, March 2014, Above 400 hPa

All latitude bands

NWCSAF Met-10 IR 10.8, April 2014, Above 400 hPa

NWP assimilation trials using a lower assigned height

- Results demonstrated that lowering assigned height by around 40hPa gives an improved fit to the model background.
- NWP assimilation trial setup:
 - 2 weeks Nov 2013.
 - UKV 3d VAR, 3 hour cycling.
 - Lowered all assigned heights by 40hPa

 +ve impact on tropospheric winds during t+0 – t+12h

broadly neutral for other variables.

UKV trials with 40 hPa height adjustment

NWP index table - Observations

	oct
UK Index: NAE domain (514):	0.000 (NaN%)
UK Index: UK mesoscale domain (503):	0.000 (NaN%)
UK Index: British Isles (WMO 03) (2103):	<u>0.140 (0.43%)</u>
UK Index: UK Index Stations (2014):	0.174 (0.54%)
UK Index: UK Index Stations (old) (2011):	<u>0.022 (0.07%)</u>

Parameter	Control Data	Test Data	Test - Control Wted ETS Diff	
0Z 6Z 12Z 18Z	Mean ETS	Mean ETS		
Surface Visibility	0.029	0.036	0.142	
6 hr Precip Accum	0.246	0.249	0.050	
Total Cloud Amount	0.173	0.173	-0.002	
Cloud Based Height (3/8 Cover)	0.166	0.166	0.000	

Parameter	Control Data	Test Data	Test - Control Wted Skill Diff	
0Z 6Z 12Z 18Z	Mean Skill	Mean Skill		
Surface Temp	0.617	0.617	-0.004	
Surface Wind	0.560	0.560	-0.012	

```
Iotal Weighted Score (%)
Control Case = 32.441
Test Case = 32.615
Test - Control = 0.174 ( 0.54 % change)
```

UKV trials data over sea

NWP index table - Observations

	oct
UK Index: NAE domain (514):	0.000 (NaN%)
UK Index: UK mesoscale domain (503):	0.000 (NaN%)
UK Index: British Isles (WMO 03) (2103):	<u>0.143 (0.44%)</u>
UK Index: UK Index Stations (2014):	<u>0.149 (0.46%)</u>
UK Index: UK Index Stations (old) (2011):	<u>-0.034 (-0.10%)</u>

Parameter	Control Data	Test Data	Test - Control	
0Z 6Z 12Z 18Z	Mean ETS	Mean ETS	Wted ETS Diff	
Surface Visibility	0.036	0.043	0.135	
6 hr Precip Accum	0.249	0.248	-0.030	
Total Cloud Amount	0.173	0.174	0.012	
Cloud Based Height (3/8 Cover)	0.166	0.168	0.020	

Parameter	Control Data	Test Data	Test - Control	
0Z 6Z 12Z 18Z	Mean Skill	Mean Skill	Wted Skill Diff	
Surface Temp	0.617	0.617	-0.004	
Surface Wind	0.560	0.560	0.016	

```
Fotal Weighted Score (%)
Control Case = 32.615
Test Case = 32.765
Test - Control = 0.149 ( 0.46 % change)
```

• Met Office now produces mesoscale AMVs operationally using NWCSAF AMV package.

• NWCSAF AMVs operationally assimilated into UKV model (>400hPa only) with adjusted heights.

•NWCSAF lower AMVs have been tested over sea and ready to be included with monthly blacklist change

- Plans:
 - to start testing a layer average observation operator.
 - retune observation errors in assimilation based on cloud top height and cloud type.
 - new O-B stats monitoring package developed during this fellowship to be run in real time at Met Office.

Conclusions

- On vertical representivity of AMVs:
 - Presented further evidence that AMVs representative of layer mean wind with layer centre slightly below cloud top.
 - Slow bias in upper level AMVs almost completely removed by either lowering assigned height or by comparing against optimal layer mean wind.
 - Demonstrated improved usage of AMVs:
 - Lower assigned height ~40hPa: easy win
 - significantly reduced slow bias
 - Layer mean wind:
 - gives closest fit between AMVs and model.
 - Robust results confirmed in independent trial period.
 - Cloud type dependence of AMV error stats: evidence that cloud type is a predictor of AMV error characteristics

• On utility of simulation study technique:

- Model simulations are getting more and more realistic.
 - Synthetic AMVs from **low** and **medium** height clouds had similar error characteristics to real AMVs
- Simulations of clouds are still imperfect:
 - Synthetic AMVs from **high cloud** suffered from large height assignment errors: results not representative of real AMVs
- In this study of cloudy AMVs, the simulation technique did not yield any more useful results that could not be found from standard O-B stats.
- Simulation studies still very useful for simulating future observing systems.
 - Need to be aware of limitations of technique when drawing conclusions from results.