CLOUD TOP, CLOUD CENTRE, CLOUD LAYER – WHERE TO PLACE AMVs?

> A. Hernandez (curr. aff. AEMET) N. Bormann (ECMWF)

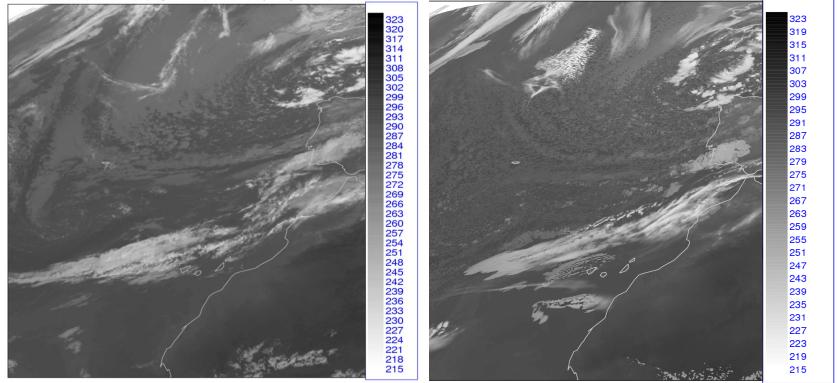
IWW12, Copenhagen, June 2014

Outline

- SimulAMV2 study introduction
- Model clouds and alternative AMV vertical locations
- Statistics AMV / model equivalent winds
- Conclusions

SimulAMV2 study

- ECMWF / EUMETSAT / CIMSS, concluded in 2012.
- Part of the results presented at IWW11:
 - AMV as vertical (and horizontal) averages of wind .
- Results after IWW11 presented here:
 - Where to place AMVs in relation to (model) clouds?
- Approach: simulation framework.
- Main objective:
 - To improve our understanding of AMV errors, to improve AMV use in NWP.
- Details in JAMC papers Bormann et al. (2014) and Hernandez-Carrascal and Bormann (2014).


SimulAMV2 study: model simulation + AMV derivation

- Model simulation (details in slides at the end):
 - WRF 2.2 regional model (Skamarok et al., 2005)
 - Study period is 24 hours, a 6-30 h forecast spin up 6 h.
 - Area: 58.8 N / 80 W / 58.8 S / 80 E.
 - Horizontal resolution 3 km at equator.
 - 52 vertical levels.
 - Data available every 15 mins.
- SEVIRI simulated images (radiative transfer model RTTOV9).
 - Meteosat-8: almost full view, slightly chopped at N and S.
- AMVs derived by EUMETSAT: IR10.8, WV6.2, only cloudy scenes. Prototype of CCC method used.

SimulAMV2 study: model simulation

METEOSAT 8 SEVIRI (Channel 9 IR10.8) Brightness Temperature Thursday 17 August 2006 0000UTC

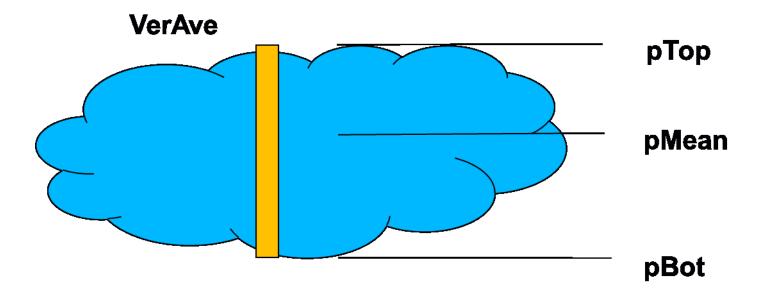
OBS

WRF

ECMWF

SimulAMV2 study: part presented at IWW11

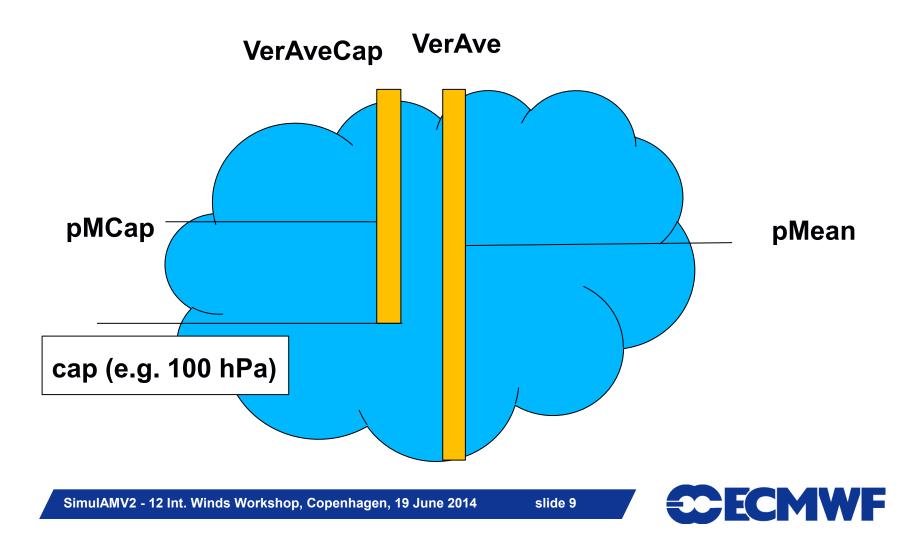
- Interpretation of AMVs as single-level winds at pAMV.
 - Comparisons simulated AMV / model similar characteristics than comparisons real AMV / model first guess, but errors larger!
- Reassigning AMVs to lower heights:
 - Large improvement (bias and RMSVD).
 - Best $\Delta p \sim 90$ hPa for AMVs from IR10.8 imagery.
 - ... and around 60-80 hPA for high-level WV AMVs
- Interpreting AMVs as vertical averages:
 - Improvement in the agreement AMVs / model equivalent:
 - Up to ~5% for high-level AMVs and 20% for low-level AMVs.



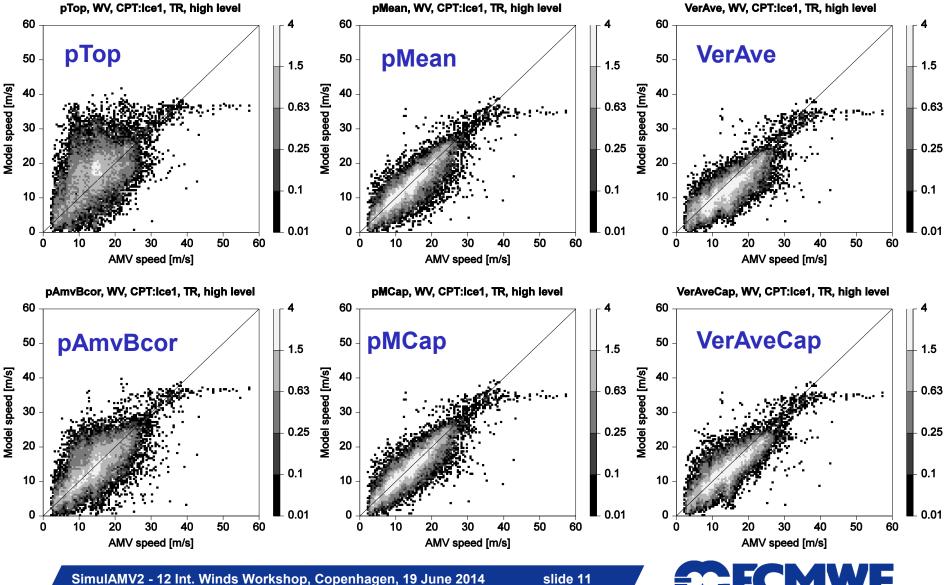
- Simulated AMVs: "true atmosphere" available.
 - Profiles of u, v, specific humidity, ...
 - Also cloud variables: ice mixing ratio, liquid water mixing ratio, cloud cover.
- Model clouds (truth) known.
 Used to explore alternative vertical locations for AMVs.
- Also to classify AMVs according to the cloud profile – and avoid multilayer scenes.

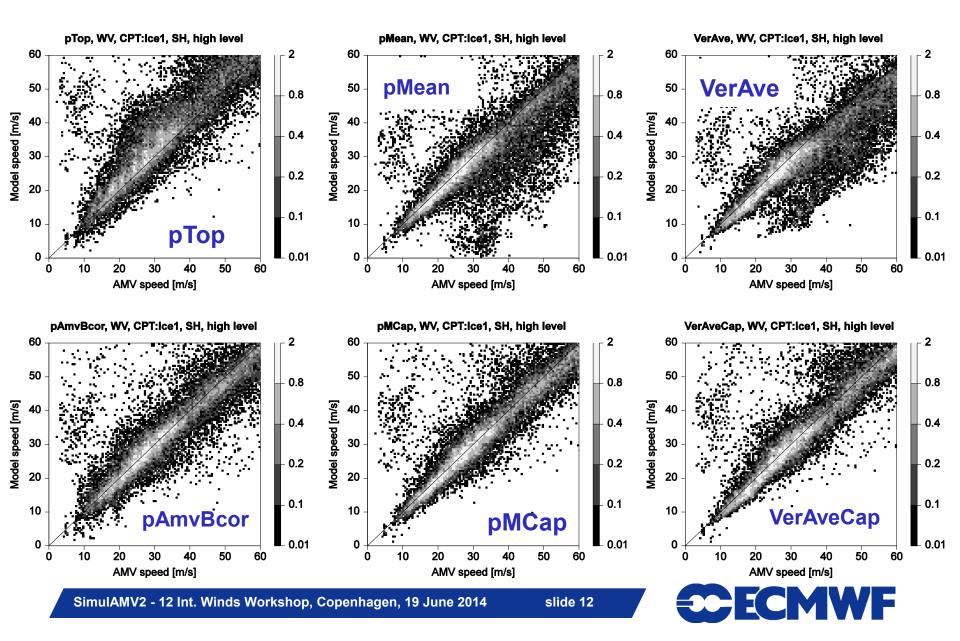
	IR 10.8 (%)	WV 6.2 (%)
Clear	6.4	29.9
lce1	11.7	43.6
Liq1	29.9	2.2
Multilayer	52.0	24.3

• Different interpretations of AMVs -observation operators in data assimilation.



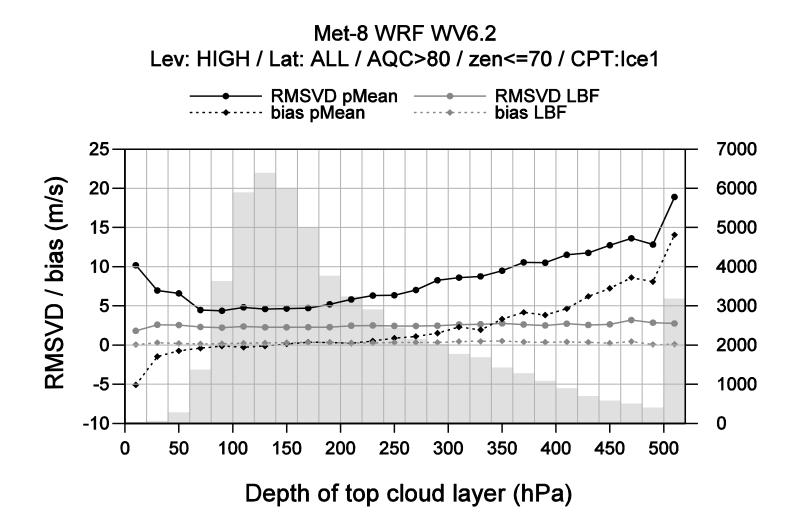
- **pMean** weighed mean of model levels within the cloud, with weights proportional to ice (or liquid water) contents.
- Note: these locations are independent of pressure assigned during derivation.


• Sometimes clouds are deep: variants pMCap, VerAveCap.

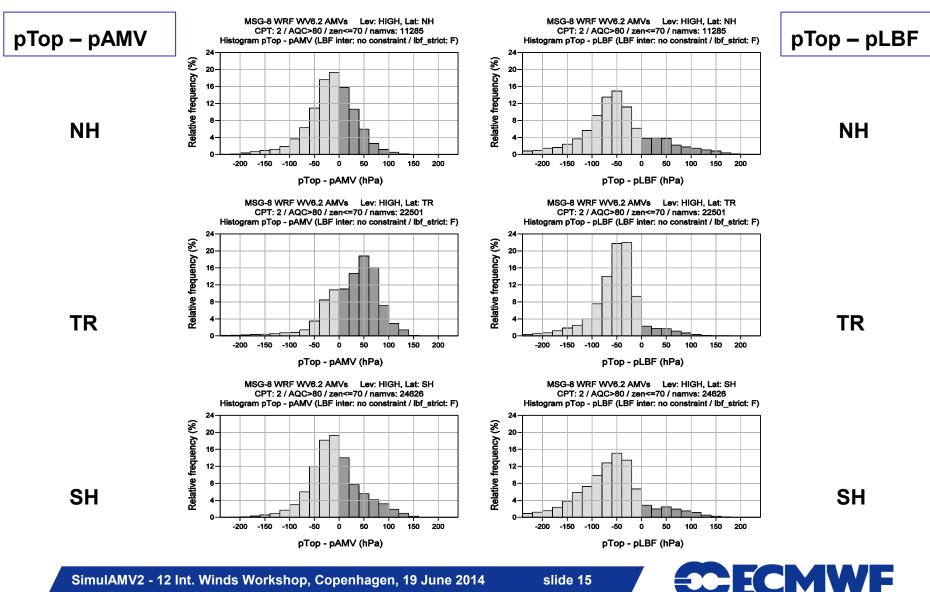

- Other levels used for reference:
 - pAmv: pressure assigned during the derivation.
 - pAmvBcor is corrected pAmv, i.e.
 - +70 hPa for WV6.2 AMVs.
 - +100hPa for IR10.8 AMVs.
 - pLBF: Level of Best Fit.

Stats for different AMV interpretations: high, WV, TR, ICE1, speed

Stats for different AMV interpretations: high, WV, SH, ICE1, speed

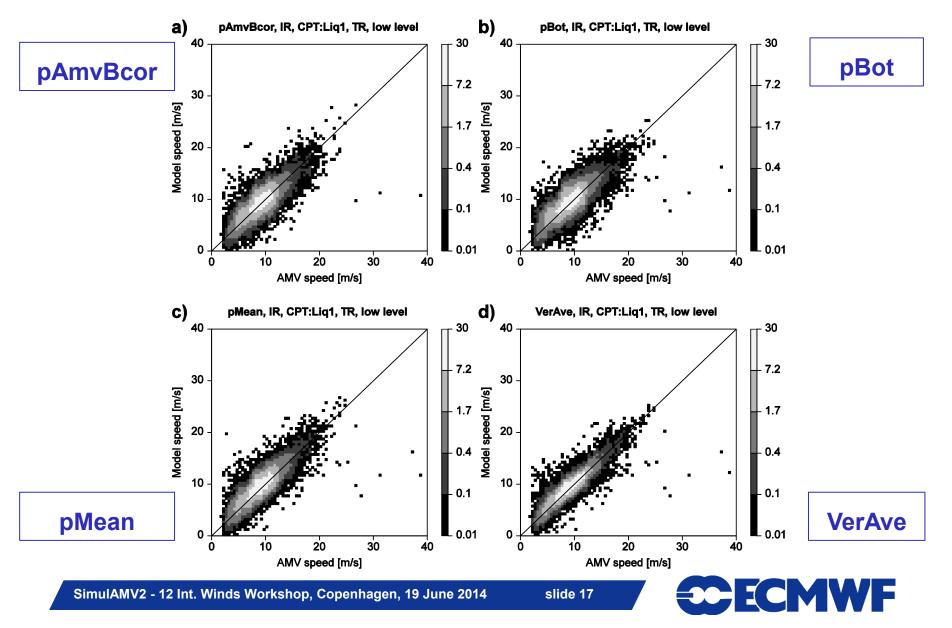

Stats for different AMV interpretations: high, WV, ICE1

WRF WV6.2 AMVs: HIGH LEVEL, QI > 80%, ICE1									
	NH	TR	SH		NH	TR	SH		
Number	11693	22538	25117						
AMV speed (m/s)	21.7	14.4	36.5						
	Speed bias (m/s)				RMSVD (m/s)				
pAmvBcor	0.2	0.0	0.5		7.1	6.6	8.4		
рТор	-3.2	-2.4	-4.0		8.7	9.2	11.6		
pMean	-0.1	0.6	3.4		6.4	4.3	10.4		
рМСар	-0.5	0.4	0.0		6.3	4.0	7.3		
VerAve	1.1	2.0	4.5		6.6	5.1	10.2		
VerAveCap	0.1	0.8	0.2		6.2	4.4	7.4		


Stats for different AMV interpretations: high level / WV

CECMWF

Stats for different AMV interpretations: high level / WV


Stats for different AMV interpretations: low level / IR10.8

WRF IR10.8 AMVs: LOW LEVEL, QI > 80%, LIQ1								
	NH	TR	SH		NH	TR	SH	
Number	6116	61731	24132					
AMV speed (m/s)	8.5	9.0	8.2					
	Speed bias (m/s)				RMSVD (m/s)			
pAmvBcor	-0.2	0.3	0.0		2.3	2.2	2.4	
pBot	-0.3	-0.5	-0.1		2.6	2.4	2.5	
рТор	-0.2	0.1	-0.1		2.5	2.7	2.8	
pMean	-0.2	-0.5	-0.3		2.2	2.1	2.3	
VerAve	-0.1	-0.4	-0.1		1.8	1.6	1.8	

Stats for different AMV interpretations: low, IR10.8, TR, LIQ1, speed

Conclusions

- Alternative interpretations of high level AMVs (and ice clouds):
 - Assignment to pTop:
 - slow speed bias and large RMSVD very similar to pAmv!
 - Best agreement when AMVs are interpreted as
 - the wind at a level within the cloud (pMean) or
 - an average wind over the cloud (VerAve).
 - For deep cloud layers, it is beneficial to limit the pressure interval to the top part of the cloud layer (e.g. 100 hPa)
 - Best: pMCap, VerAveCap.

Conclusions

- Alternative interpretations of low level AMVs and liquid water clouds:
 - Best when AMVs are interpreted as layer averages of wind (VerAve).
 - AMVs interpreted as a wind at a level within the cloud (pMean) is second best.
 - AMVs interpreted as wind at the cloud top (pTop) or at the cloud bottom (pBot) worse (and similar to each other).

Food for thought

- Potential implications for use of real AMVs as single-level wind observations:
 - Current situation:
 - General cloud top products are increasingly used for HA of AMVs at high levels.
 - Users interpret the assigned pressure as representative height.
 - Would it be beneficial to re-assign AMVs to a lower height?
 Should users do an empirical height correction?
 - Should AMV producers instead aim to estimate the representative height, rather than the cloud top?
- AMVs as layer-averages?
 - How do we determine the best layer to average over for each AMV when we do not have the full cloud information?

Thank you for your attention

Any questions?

References

- Bormann et al., 2014: Atmospheric Motion Vectors from Model Simulations. Part I: Methods and Characterization as Single-Level Estimates of Wind. Journal of Applied Met. and Climatology, vol 53, pp 47-64.
- Hernandez-Carrascal and Bormann, 2014: Atmospheric Motion Vectos from Model Simulations. Part II: Interpretations as Spatial and Vertical Averages of Wind and Role of Clouds. Journal of Applied Met. and Climatology, vol 53, pp 65-82.
- Otkin et al. 2009: Validation of a Large-Scale Simulated Brightness temperature Dataset Using SEVIRI Satellite Observations. J. Appl. Meteor. and Clim., 48, 1613-1626.
- Skamarok et al. 2005: A description of the Advanced Research WRF version 2.
 NCAR Tech. Note TN-4681STR, 88 pp.

Details

- WRF simulation details:
 - Forecast model: v 2.2 of the WRF regional model (Skamarok et al., 2005).
 - Model area: 58.5 N / 80 W / 58.5 S / 80 E.
 - Horizontal res: 3 km at equator to 1.7 km at N and S boundaries.
 - 52 vertical levels, model top at 28 hPa.
 - Clouds explicitly resolved.
 - Existing simulation used (Otkin et al., 2009), kindly provided by CIMSS (Steve Wanzong).
 - Simulation is a 6-30 h forecast spin up period 6 h.
 - Initialization: 15 Aug 2006 at 18 UTC from 1 deg analyses from GDAS.
 - Study period is 24 h starting 16 Aug 2006 at 00.

Details

- Clouds from the model:
 - Neighbourhood considered cloudy at a model level if:
 - 1. the % of cloudy grid points is 15 % or more, and
 - 2. the ice (or liquid water) mixing ratio is at least 10-4 g/kg.
 - WV6.2 images: cloud levels below 700 hPa ignored.

